
AD-AI09 746 INTERMETRICS INC CAMBRIDGE.MArS F/S 9/2
ADA INTEGRATED ENVIRONMENT IDSGN RATIONALE.() -0C0

UNCLASSIFIED DE 1RADC-TR-81-357 F360 L



i12.0 1_o
I¢.

0

11112ROO5 R LT TEST1

MICROCOPY RESOLUTION TEST CHARIT



PHOTOGRAPH THIS SHEET

W LEVEL flVsEWCS 2:iC,

I RY

2*' p,9j74 rc E r ravwmbe±

DOCUMENT ENTEFICATION

. r= oA-2 -c- V C -R..tI- 3 7

DISRIUTON OTATEMENT A

Apoved for public release;
Distribution Unlimited .

DISTRIDUTION STATEMENT

ACCESSION FOR
NTIS GRAM

uic TAB DTIC
UNANNOUNCED ELECTE
JUSIFICATION AI9f0

BYD
DISII1U FION
AVAILABILITY CODES
DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED

DISTRIBUTION STAMP

820 1 12 (el

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

FORM DOCUMENT PROCESSING SHEET
- DTIC o 70A

- - . . . . . . . .'.. . . . . I l I . . .. . .. . . " . . ..OC T. . . ..7-9, . . . . I . . . . . . . I , . .



RADC-TR- -.357
Interim Report
December 1981

': ADA INTEGRATED ENVIRONMENT I
" DESIGN RATIONALE

Tm4 Intermetrics, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

LAJ .. al ~~



This document was produced under Contract F30602-80-C-0291 for the
Rome Air Development Center. Mr. Don Roberts is the COTR for the Air Force.
Dr. Fred H. Martin is Project Manager for Intermetrics.

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-357 has been reviewed and is approved for publication.

APPROVED: ) (f4 24
DONALD F. ROBERTS
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER;

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the .RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COES) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices

on a specific document requires that it be returned.

-',--



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When. 04Ad liters__________________

REPORT DOCUMENTATION PAGE BRE COMPLETM FR

Z. GOVT ACCESSION MDO z. 1REcipiENTrs CATALOG NMOE

c TIL (an g"Weis S. TYPI Off REPORT 6 PEF400 COVgREC
Interim Report

ADA INTEGRATED ENVIRONMENT 1 15 Sep 80 - 15 Mar 81

DESIGN RATIONALE 6. PER1FORNIING 016. REPORT NUMBER

N/A
7. AUTHOR~qS. CON TRACT ORM0- GANT UMUERMe)

F30602-80-C-0291

2-POOMN RAIAINNAME AND A00ORESS 10. PROGRAM ELEMENT. PROJIECT. TASK

S PerOtRMING RAIZATcO AREA & WORK UNIT HUMSERS

733 Concord Avenue 62204F/33126F
Cambridge MA 02138 55811908

11. CONTROLLING OFFICE N AMC AMC AoORMS 12. REPORT DATE

Rome Air Development Center (COES) December 1981

Griffiss AFB NY 13441 I3. HUmsER OF PAGES
141

T MCITORING, AGENCY NAME I AOORESS(if dieetl IMM Cof,,olilni Office) IS. SECURITY CLASS. (of this report)

Same UNCLASSIFIED
190. OECLASSIFICATIOH/0 OOWHGRAOIHG

SI!CHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIGUTION STATEMENT (of the astat en~trd in Block 20. If differenit from, Repo"f)

Same

1S. SUPPLEMENTARY NOTYES

RADC Project Engineer: Donald F. Roberts (COES)

Subcontractor is Massachusetts Computer Assoc.

- 1S. KEY WORDS (Coelif,. an revers aid& it necessar and Identify by block mleber)

Ada MAPSE AIE
Compiler Kernel Integrated environment
Database Debugger Editor
KAPSE APSE

20. ASITRACT (Contiumu an revers e It necesayan widentI bp block mmber)

The Ada Integrated Environment (AlE) consists of a set of software tools
intended to support design, development and maintenance of embedded
computer software. A significant portion of an AlE includes software
systems and tools residing and executing on a host computer (or set of
computers). This set is known as an Ada Prograiming Support Environment
(APSE). This report describes the rationale of the design for a minimal
APSE, called a MAPSE. The MAPSE is the foundation upon which an APSE is

DD ,*ANN7 1473 EDIlTioN OF I Nov 65 is OLEtTe UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (UShom Dole Ent~~E



UNCLASSIFIED
SUCUNUY CLASSIFICATION Of TWO~S PAGCM%= 00a Ealrmi)

built and will provide comprehensive support throughout the design,
development and maintenance of Ada software. The HAPSE tools described
in this report include an Ada compiler, linker/loader, debugger, editor,
and configuration management tools. The kernel (KAPSE) will provide the
interfaces (user, host, tool), database support, and facilities for
executing Ada programs (runtime support system).

UNCLASSIFIED

SCURtt' C6411111ICAT1011 OR . A~f~f 0410 &Mteep



PREFACE

The construction of an Ada Integrated Environment is the
logical next step in the progression of efforts to solve "the
software problem", the most recent step being the development of
the Ada language itself. This design for an Ada Integrated
Environment is the result of a team effort by Intermetrics,
Incorporated and Massachusetts Computer Associates, Inc.
(COMPASS), with Dr. Fred Martin as Project Manager.

Intermetrics team members have included Arra Avakian
(Technical Director), Ben Brosgol, Morris Kranc, Rich Peterson,
Tucker Taft, and Michael Tighe. Additional significant
contributions were made by Mark Davis, Karen Huff, Ron Kole,
David Levine, Stavros Macrakis, and Mike Ryer.

COMPASS team members have included David Loveman (COMPASS
coordinator), Tolly Holt, Charley Muntz, Mat Myszewski, and Steve
Schuman. Additional significant contributions were made by Paul
Cashman, Mark Marcus, David Presberg, Kirk Sattley, and Stu
Schaffner.

Outstanding logistical support, coordinated by Toby Boyd,
was provided by Ruth Barton, Robin Camardo, Valerie Censabella,
Tim Fiorino, LeAnne Grillo, John Heymann, Elizabeth LeProux,
Deirdre Munro and Cindy Paige, of Intermetrics; and Jim Botto,
Kate Russell, and Sue Woodyard, of COMPASS.

The design team wishes to specifically acknowledge Jean
Ichbiah for the design of Ada, John Buxton for the development of
the Stoneman document, members of the Intermetrics DARPA Ada
compiler project for valuable insights, and the researchers and
developers too numerous to mention in the fields of programming
environments, tool design, and compiler construction whose ideas
we have utilized.

This design effort was sponsored by the United States Air
Force, Rome Air Development Center. Don Roberts served as the
contract monitor.

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



TABLE OF CONTENTS

Chapter 1 EXECUTIVE SUMMARY

KAPSE/Database
Ada Compilation
Embedded Computer System Development
MAPSE Environment

Chapter 2 INTRODUCTION

Background
Embedded Computer Software (ECS) Activities
Expected AIE Leverage
Relevance to the Software Bottleneck
Ada Environment Terminology
Perspective on MAPSE Requirements

Integration
Tools
Rehosting and Retargeting
Testing and Maintenance

MAPSE Architecture Preview
General Organization of the Rationale

Chapter 3 MAPSE ARCHITECTURE

Statement of the Problem
Design Overview
Usability
Open Endedness
Short Term
Long Term

Structure of the MAPSE
The Host-Independent Structure
The Host-Dependent Structure

Toolset Architecture
Definition of "Tool"
Tool Components
The Pattern Matcher
The Execution Harness
Virtual Memory Methodology System
Interactive Tool Shell

Testing Considerations

INTERMETRICS INCORPORATED 7 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840



Chapter 4 KAPSE

KAPSE Approach
The KAPSE and the Database
Database Tree Structure
What is Stored in the Database
Leaf Objects
Database Access Structure
Object Names, Object Addresses
Distinguishing Attributes and Names of Objects
Nondistinguishing Object Attributes
System Attributes
Access Control - Introduction
High Level Access Control
Partitions, Composite Objects, and Management
KAPSE Operations
Operations Applying to All Objects
Operations on Simple Objects
Operations on Window Objects
Operations on Composite Objects
Operations on Program-Context Objects
Operations on Private Objects
User Service Operations
Packages

Chapter 5 PROGRAM COMPOSITION

The Program Library
Program Library Issues
Program Library Architecture

Program Composition Tools
Recompilation Minimization
Versions and Revisions

Example

Chapter 6 COMMAND PROCESSING

MAPSE Command Language
Command Language Issues
Command Language Style
Command Language Requirements

Elementary Command Language Facilities
Program Invocation
Names
Types
Variables
Statements

Advanced Command Language Facilities
Scripts
Input/Output Redirection
Piping
Background Tasks

ii

INTERMETRIC$ INCORPORATED e 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840



Jobs
Blocks
Example

MAPSE Command Processor
Architecture Issues
Implementation
Input Filters
Main Control
Special Functions

Chapter 7 TEXT EDITOR

Chapter 8 COMPILER

Compiler Environs
Compiler Structure

Diana
Virtual Memory Management
Structure

Targeting and Retargeting
Code Quality
Run-time System
Retargeting

Compiling Ada
Lexical Elements
Declarations and Types
Names and Expressions
Statements
Subprograms
Packages
Visibility Rules
Tasks
Program Structure and Compilation
Exceptions
Generic Program Units
Representation Specifications
Input Output
Predefined and Implementation Defined Programs

Chapter 9 DEBUGGER

Introduction
Requirements
Design Considerations
Design Directions - Future APSE Tools

Functional Simulation
Debugging on the Target Machine

Chapter 10 MAPSE GENERATION AND SUPPORT

:. lii .

INTERMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840



Generators Belong to the MAPSE
Total Self-hosting Rationale
Bootstrap Ada Compiler

Use Existing DARPA Ada Compiler
Generate PL/I as Target Code

System Generation
Virtual Memory Methodology

Space Efficiency
Time Efficiency
Reliability
Portability
Extendability

Chapter 11 CONCLUSION

BIBLIOGRAPHY

Appendix A.1 - A Simple Programming Scenario
A.2 - A Short Management Scenario

i

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840



Chapter 1

EXECUTIVE SUMMARY

The stated objective of the Intermetrics/COMPASS design is
to specify a product to solve real software-development problems
in a practical, efficient and user-friendly manner. Our priori-
ties in approaching many of the difficult tradeoff decisions in
satisfying the Statement of Work [S.O.W.] have been: to serve a
wide range of potential users (including managers, maintainers
and novice to expert programmers, in large and small projects);
to ensure the practicality and implementability of the design;
and to tailor support to the preparation, compilation, execution
and maintenance of Ada programs.

A definite theme running through this effort is the applica-
tion of a few general principles, ideas or techniques to the
realization of the first instance of a minimal Ada Programming
Support Environment, viz the MAPSE. As a result, a high degree
of integration and integrated communications are evidenced across
data, control and development concepts. STONEMAN [STONEMAN] and
the S.O.W. suggest a layered implementation of virtual machines
where the Kernel APSE (KAPSE) isolates all host machine dependen-
cies from the user and then presents a universal (Ada) interface
to software tools and users alike. The KAPSE becomes the medium
of exchange, through the database and other facilities, for com-
munications and control between users and/or tools. This is
exactly the approach taken in this design. All host dependencies
are, in fact, isolated within a few KAPSE routines. The KAPSE is
'keeper of the database' and controls and monitors all accesses.
All other Ada programs, whether MAPSE tools or user-written Ada
programs, in a sense, have the same status. Each looks to the
KAPSE for run-time support, for data, and for communications with
other tools.

The principal user interface is the Command Processor (CP),
which provides a natural <verb><object> interactive MAPSE Command
Language (MCL), through which all MAPSE tools are available. The
CP responds to both user keyboard (or batch) inputs as well as
stored scripts. Since all MCL commands can be effected using Ada
statements as well, the MAPSE can be equally controlled from any
executing Ada program as from the CP. The CP standardizes con-
ventions between tools: most tools will accept input from a stan-
dard file and direct output to a standard file. This allows the
CP to chain the operation of one tool to another without the user
having to designate intermediate files. This chaining or piping

SID 1-1
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is a great convenience in preparing user scripts or complex
interactive command sequences. Of course, the user can always
redirect input or output from/to specific files if he so chooses.

From the CP, the user may select a powerful set of MAPSE
tools: the text editor for preparing general text or Ada source
(the editor has an Ada mode which recognizes Ada lexical ele-
ments); the Ada compiler for compiling single or multiple compi-
lation units into the program library; the linker for collecting
consistent sets of computation units for execution; and the
debugger which controls the execution of Ada programs and pro-
vides the necessary diagnostic tools for development.

KAPSE/DATABASE

The key elements of the MAPSE are the KAPSE/Database and the
Ada compiler. The singular contribution of the database design
is the notion of "distinguishing attributes". Here the user can
arbitrarily set up a multi-dimensional name space where each name
is defined by a set of distinguishing attributes. Thus, for
example, a project may choose to establish a 5-space indicating
(aircraft, subsystem, module, test-status, type). Values for
these attributes can define names or, "locations", in the data-
base for source, documentation, test scripts, etc. (These could
be within the Ada program library, for the library itself must be
part of the database.)

In order to see the power of this concept, consider the fol-
lowing database entities from a hypothetical B-52 upgrade
development:

(B_52, power, p106_A. level 0, source)
(B 52, navigation, controller, level_1, test-script)
(B_52, weapon, search, configA, source)
(B_52, navigation, GPSsignal, level_0, source)

Note that from the B_52 root this can be viewed (vertically) as
an hierarchical configuration, or tree. However, the
KAPSE/Database facilities also permit arbitrary (horizontal) par-
titions of the same data; i.e., all instances of source can be
accessed or manipulated or, for example, all instances of level_1
scripts, etc.

Arbitrary and flexible naming is only one aspect of this
design. This is coupled with access controls to satisfy all the
database requirements in the SOW. The KAPSE implements the con-
cept of a "window" on the database where the window carries with
it a role for its user. The role (e.g., editor, manager, tester,
etc.) is then translated into particular operational abilities to
deal with the data being accessed. Thus, in the examples above,
the B 52 project manager may allocate separate windows to power,
navigation and weapons groups for software development, e.g.,

1-2
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(B 52, power, *, *, *)

Within these groups more restrictive windows may be further dif-
ferentiated with constrained capacities, e.g., read-only,
read/write, edit, test, etc. A small test sub-group might have
access to only

(B_52, power, *, *, testscript)

or an IVV contractor might be able to address all test scripts
for config_A releases; i.e.,

(B_52, *, *, config A, testscript)

Of course, the combinations are endless but these simple concepts
satisfy all of the SOW requirements on the database: management
and control. The system allows a straightforward and conven-
tional organization while having within it the potential for
developing the necessary structures and controls to support a
variety of management disciplines. Responsibilities can be
highly centralized or widely distributed.

One point to be added is that each database object has
appended to it a history file of how it got to this point, and a
category which allows system interpretation of the data and how
it may be used.

It is anticipated that objects in the database such as Ada
program libraries, may become quite large and contain data struc-
tures of arbitrary complexity. Program access to these database
objects is supported, therefore, by a virtual memory management
(VMM) system which permits logical structuring of the data for
machine-independent access and manipulation. By use of a program
the VMM can store, create, modify, and retrieve extremely large
data structures which exceed the memory space of the computer.
The designer and programmer are free to concentrate on the logi-
cal data structure; the VMM system takes care of the physical
structure. VMM will prove invaluable in aiding the rehosting of
the MAPSE to small machines.

ADA COMPILATION

The other key element in the system is the compiler and the
methods by which compilation is accomplished. Since the MAPSE
itself (i.e., most of the KAPSE and all of the tools) is written
in Ada, the first requirement is that the compiler issue effi-
cient code and that the run time system (RTS) be especially effi-
cient and support full Ada generality. The entire system depends
on and constantly uses the RTS; its efficiency is more important
to practical system utility than esoteric optimization tech-niques.
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The approach taken by Intermetrics/COMPASS in designing the
compiler is conservative and one with which success has already
been demonstrated. Based on PQC/TCOL ideas [Leverett 80], the
compiler takes the form of a series of independent phases which
add to and/or modify information in an intermediate language (IL)
definition at each interface. The design embraces the new Diana
definition [Goos 811 as the intermediate language. The structure
of Diana then remains constant from semantic analysis right
through code generation. Maximum flexibility is maintained by
delaying optimization enhancements until usage patterns can be
established and analyzed. The use of Diana instead of TCOL as an
intermediate language is but a variation on the already esta-
blished Intermetrics compiler building techniques. The front end
and run time system of the MAPSE/Ada compiler is based on the
DARPA Ada compiler being built by Intermetrics and now nearing
release. The middle phases are a reflection of the Intermetrics
one-year participation in the PQCC project at CMU. The back end
compilation technique derive directly from the Intermetrics Stan-
dard Compiler (ISC) approach, which has successfully been applied
to the development and delivery of Pascal, FORTRAN, and JOVIAL
compilers. In summary, our rationale for selecting this design
is simple - we know it will work; the technical risk is minimal.

Ada supports separate compilations. A complete embedded com-
puter system (ECS) software product might involve hundreds of
interdependent compilation units and thousands of compilations
and re-compilations. It is imperative that these be conducted in
an efficient manner. The potential problem can be illustrated by
considering a series of compilation units, A through Z, with
interdependencies, e.g.,

A with B
B with C
C with D

Y with Z

In this case A through Y depend upon Z, A through X depend upon
Y, With this example as a model, the recompile strategy of the
design will significantly reduce the potential for extraneous
compilations by delaying the necessity for creating a consistent
program library until the library is actually used, i.e., linked.
This allows repeated intermediate compilation steps without
requiring immediate recompilations of all potentially affected
units. (See Program Integration B-5 Specifications, Section 6
for a more elaborate discussion of this problem and its solu-
tion.)

1-4
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EMBEDDED COMPUTER SYSTEM DEVELOPtF2NT

The main object of an APSE is the development of embedded
computer software. The database, compiler and management facili-
ties are necessary supports but the resulting software must exe-
cute and be verified while executing. The philosophy here is
consistent with STONEMAN in that ECS software should be developed
and verified to the greatest extent possible on an APSE host
before commitment to a target machine. With target machine diag-
nostic facilities usually a minimum both in capacity and availa-
bility, this makes great sense for large multi-programmer
efforts. The MAPSE design presented here integrates debugging
and simulation such that it supports the spectrum of testing from
interactive unit debugging to large scale digital simulation,
either on-line or batch. Debugging is accomplished through a set
of MAPSE capabilities commanded by syntax extensions to MCL. The
user therefore can employ the full capabilities of MCL within the
debugging environment. As a result, the full power of the MAPSE
(i.e., all tools) can be brought to bear on a debugging problem,
in interactive or batch mode.

The approach is to take advantage of the compiler DEBUG
option which instruments the code and provides potential break-
points (hooks') at every Ada statement. The penalty is small
for interactive debugging on the host but the benefit is large
when the code is integrated and verified against environment
simulators, controlled by batch scripts or interactive commands.
The MAPSE design further lays the foundation for 'functional
simulation' as a future APSE tool, a technique whereby Ada state-
ments executing on the host are weighted with target machine
elapsed times. Time is then accumulated as a software pseudo-
time quantity and Ada tasking and environmental simulators are
made consistent with this time. The result is an effective
closed-loop digital simulator for verification and validation of
ECS software on the host. (This basic technique was pioneered by
Intermetrics and has been in successful use for more than 8 years
in the development of Shuttle Software using HAL/S). Final
verification of ECS software takes place on the target machine
itself which can be supported by the host debugger and database.
Although the intention is for target debugging to have the same
functionality as host debugging, specific considerations are
beyond the scope of the current MAPSE design effort.

MAPSE ENVIRONMENT

Our final point to be made in this overview of MAPSE design
highlights is the utilization of resources on the 370/VM and Per-
kin Elmer 8/32 host computers. Users on each machine may operate
in relative isolation from each other. On the 370/VM each user
logging into the MAPSE will receive a separate 370 virtual
machine (VM). All MAPSE tools are available on every VM and are
supported by instances of the Ada run time system. In a sense,
each tool (or Ada program) has its own Ada virtual machine. The
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result is that independent users can develop, i.e., compile, exe-
cute, debug, etc., their own Ada programs in isolation. In this
model, the database and database operations also reside within a
VM and data accesses are accomplished by the 370/VM system Vir-
tual Machine Communication Facility (VMCF), an efficient high
speed memory-to-memory pathway. Note that this MAPSE allocation
leaves the 370/VM machine free to support non-APSE users on other
VM's. In this way, corporate 370's need not be dedicated to
MAPSE use. Scheduling and utilizations of all VM's are handled
automatically by the 370/VM operating system, CP-VM370. Where
interface between MAPSE and non-MAPSE is required, the KAPSE will
utilize an import/export function provided for that purpose.

Mapping onto the Perkin Elmer machine is done analogously.
Each user gets an independent OS/32 time-sliced by OS/32. From
these tasks MAPSE tools can be activated also as independent
OS/32 tasks. A relationship among tools being used by a particu-
lar user is maintained by the KAPSE. Database access is handled
by the OS/32 Intertask Communications Facility. In this case,
however, the KAPSE will rely on OS/32 file handling and disk I/O
routines for mass storage. As with the 370/VM, the MAPSE on this
machine is a 'good neighbor'. That is, non-MAPSE users can coex-
ist, simply by being allocated separate tasks.

The Rationale document (IR-684) explores most of the MAPSE
design decisions in considerable detail. The overall MAPSE archi-
tecture is presented in the System Specification (IR-676). The
detailed specifications are found in the following Computer Pro-
gram Development Specifications:

-Ada Compiler (IR-677)
-KAPSE/Database (IR-678)
-MAPSE Command Processor (IR-679)
-MAPSE Generation and Support (IR-680)
-Program Integration Facilities (IR-681)
-MAPSE Debugging Facilities (IR-682)
-MAPSE Text Editor (IR-683)

Within the time constraints of six calendar months, the
Intermetrics/COMPASS team has put forth an honest effort toward
designing for implementation, the best Ada programming environ-
ment possible, complying with the requirements of the S.O.W. and
the guidelines of Stoneman. We believe we have succeeded and
respectfully offer this design for your evaluation.

Dr. Fred H. Martin
Project Manager
March 15, 1981
Cambridge, MA
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Chapter 2

INTRODUCTION

This Rationale document, together with the companion System
Specification and Computer Program Development Specifications
present the design of a minimal Ada Programming Support Environ-
ment - MAPSE - as called for in the RADC Statement of Work PR No.
B-0-3233. The design is also consistent with the general guide-
lines presented in the DoD sponsored STONEMAN [STONEMAN]. The
MAPSE is the basis for the implementation of a more complete APSE
and, eventually, a comprehensive Ada Integrated Environment
(AIE).

BACKGROUND

The situation that has given rise to the need for an Ada
Integrated Environment is of major significance to the DoD. We
see that situation in the following broad terms.

The revolution in computer hardware has made it possible to
include computer elements in virtually every military technical
configuration. However, this potential has not been realized.
The problem has been in achieving achieving the desired cost
effective and timely production of reliable and maintainable
large-scale software. STONEMAN comments on this, as follows:

"Typically hardware costs now account for only
some 15% of project costs, with 70% to 90% of
software costs arising in the long term life cycle
maintenance and support phase of the system".

[STONEMAN, 2.A.11

Decades of effort and vast sums have gradually brought home
the lesson that no single (let alone simple) prescription will
substantially change the situation - not "automatic programming*,
not a programming language alone, nor a software engineering
methodology, etc. In sponsoring the MAPSE development as a first
move towards an AIE, the Air Force has recognized the "holistic"
and intrinsically complex character of the needed achievement.

The focus on a computer-supported integrated environment -
for all life cycle phases of software systems - as a target of
design and implementation is a bold but technically sound initia-
tive. Although not numerous, there already exist environment
projects now sufficiently mature (e.g., PDS [Cheatham 791, Mesa
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[Lauer 79] and [Horsley 79], Gandalf [Notkin 79], CADES (cGuffin
79], NSW [Millstein 77]) to demonstrate that (a) designed
software environments can indeed make significant improvements in
software production efficiency and quality; (b) the technological
basis for achieving the basic goals of the RADC Statement of Work
(S.O.W.) and the STONEMAN already exists.

EMBEDDED COMPUTER SYSTEMS (ECS) ACTIVITIES

The development and maintenance of ECS software is a signi-
ficant technical - industrial activity, comparable in scope to
other major mi'Itary technologies. A single project over its
lifetime may well involve hundreds, if not thousands of techni-
cally and managerially concerned participants, over periods that
may be measured in decades.

As with all important military technologies, the needs for
ECS software reliability and adaptability to changing field
requirements can hardly be overstated. The reliability demand
implies well-developed and controlled quality assurance pro-
cedures as part of the development process. Reliability and
adaptability together translate into enforced modularization dis-
ciplines which promote maintenance and adaptation. Indeed, this
is an important component in the rationale for the Ada language
in the first place.

The demands for reliability and adaptability - never easy to I
meet - are made more difficult by the fact that typically, ECS
software (a) must meet critical real time requirements; (b) is
event driven, and therefore entails the coordination of every
asynchronous process; (c) will have to execute on computers with
little excess capacity - and, for some applications, on multiple
processors, more or less distributed. Every one of these condi-
tions adds greatly to the difficulty of building robust, main-
tainable ECS software.

Yet another difficulty stems from the fact that ECS software
must fit into an unstable hardware environment. The hardware too
will tend to be at the cutting edge of technology, and therefore
subject to corrections and improvement.

EXPECTED AIE LEVERAGE

What are the main sources of leverage in an integrated
environment - such as the required MAPSE? The first is con-
trolled, long-term-adaptable, and easy-to-understand integrated
communication between people and people, people and tools, and
tools and tools. Next are powerful tools of high quality which
are integrated with each other wit respect to usage, data, and
controls. Finally, there is stability in the face of host and
target perturbations, that is, replacement of host or target by
another machine (the portability requirements).
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Of these properties, integrated communication is the hardest
to achieve in the present state of the art. However, it is the
property upon which growth from the MAPSE to a full-blown AIE
critically depends.

RELEVANCE TO THE SOFTWARE BOTTLENECK

There is every reason to believe that the above-named pro-
perties, and especially the communications property, correctly
address the software bottleneck. Consider the following points:

a. Large scale software development involves not only many
applications programmers and their managers, but others
as well. During development, ongoing communication
must be maintained with system specifiers and
designers, hardware engineers, etc. [STONEMAN,
2.A.ll.al. For debugging and later system maintenance,
audit trails of these communications and their effect
on the software need to be logged. Doing this without
computer-aided communications would be extremely diffi-
cult.

b. Embedded Computer Systems (ECS) software maintenance is
typically long term, and distributed over many systems
in the field. Here extensive communications require-
ments between the maintenance organizations and the
user community arise. Without computer environment
support, these communications would be very costly and
difficult to manage [Cashman 80]. In addition, because
of the long life of military ECS systems, one can
expect a substantial turn-over in personnel responsible
for the development and maintenance of a single system.
This is a powerful motive for record keeping and con-
trolled communications as part of system evolution.

The essence of the configuration management problem,
critical in every life cycle phase of a system, is this
communication and coordination among the many role
players concerned with the various parts of a confi-
guration [STONEMAN, 2.A.15].

c. The military requires many formal steps of documenta-
tion, review, sign-off, etc. All of these call for
structured and controlled communications [STONEMAN,
2.A.3].

d. Clearly, powerful tools are required in a large,
multi-faceted activity such as software production.
This is especially true of the real-time, high-
reliability, applications that characterize ECS
software [STONEMAN, 2.A.1l.b]. Sophisticated debug-
ging, simulation, compiling tools, etc. are indispens-
able.
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e. Stability in the face of host perturbations is of great
importance to environments for ECS software develop-
ment. The development of ECS software and its subse-
quent support extend over long periods of time, and can
involve many people at multiple locations. Host changes
are inevitable.

Finally, the reader is reminded of the assertion implicit in
STONEMAN (in 2.A.1) that 60% to 75% of total ECS system costs are
unrelated to its hardware or -i-Tna- development, but t-o Ts
long-term software maintenance support. Bringing the maintenance
and support aspects of ECS software under control depends, most
of all, upon communications and record keeping controls
throughout the system's life - from 'its original specification
forward. This is a service which nothing but an integrated
environment can render. While the MAPSE is not supposed to
tackle this problem directly, it must provide the foundation for
its solution.

ADA ENVIRONMENT TERMINOLOGY

STONEMAN introduced a number of terms for the discussion of
Ada environments:

APSE a "full" Ada programming support environment.

Although STONEMAN identifies the APSE as support for
"the development and maintenance of Ada applications
software throughout its life cycle" [STONEMAN, 1.B],
the term APSE emphasizes the programming activity above
such other required activities as specifying, system
modelling, documenting, functional testing, etc. The
term Ada Integrated Environment (AIE) which appears as
the title of the S.O.W. corrects this bias. It is
apparent from the text of STONEMAN that the full APSE
is indeed supposed to encompass all of these activities
in an integrated fashion.

MAPSE This is a minimal APSE specified by STONEMAN and the
S.O.W. to include the most basic tools of current day
programming - linker/loader, command interpreter, edi-
tor, compiler, debugger - and some tools for configura-
tion management, an activity indispensable to system
development and maintenance.

Although the MAPSE is not specified to contain support-
ing tools for all life cycle phases of ECS software, it
must nevertheless exhibit the basic capability of
integrated environments: to be a medium for coordinat-
ing diverse activities - a hard enough problem even
when only MAPSE supported activities are considered.

According to STONEMAN, an APSE grows out of a MAPSE by
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tool augmentation, but (ideally) by no other structural
changes. As suggested by the S.O.W., we shall view
MAPSE's as well as APSE's as instances of AIE's.

KAPSE the kernel of an APSE (or MAPSE) - analogous to an
operating system.

The kernel is the framework within which users, their
tools and their programs cooperate. Its content is
further detailed below.

PERSPECTIVE ON MAPSE REQUIREMENTS

Most of the MAPSE requirements in the S.O.W. and Stoneman
stem from the charactti. of the activities which the MAPSE - and
later APSE will havi to support. Because the MAPSE must be capa-
ble of developing into an APSE, all APSE activities must, to some
extent, be considered from the beginning. These activities
include those performed by a variety of people, including:
analysts, programms, managers, documenters, etc.

The requirements naturally fall into four categories:
itegration, tools, rehostability and retargetability, testing
and maintenance.

Integration

The first of four integration requirements is support for
Ada. This requires that the environment provide tools for the
preparation, coding and execution of Ada programs. In addition,
the MAPSE should be programmed in Ada and further, should be
utilized for the ongoing maintenance and support of itself.

The second major integration requirement is that the KAPSE
database be specified as "the central feature of the MAPSE".

The third major integration requirement is the need for a
uniform interface between any intercommunicating entities in the
system. This is to be accomplished by means of the KAPSE; that
is to say, the KAPSE is to supply a "virtual interface or stan-
dard interfaces" which guarantees wide ranging intercommunicabil-
ity.

As much as possible also, the S.O.W. demands that intermedi-
ate data developed by one tool but possibly useful to another be
recognized, specified, and standardized so as to maximize tool
compatibility.

The fourth major integration requirement is the need for
integrated project and configuration management. This can only
be effected if there are APSE supported methods for defining pro-
ject structure in a strong sense: defining the protocols to be
followed in respect to computer operations of various project-
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related functions - definitions which the APSE can use for trac-

ing and/or controlling the development of computer stored objects
and object collections.

We therefore state: It is a requirement on the KAPSE design
that it support the evolution of project structure definitions -
definitions which enhance the ability to trace and/or control the
connections of cause to effect in the processes of ECS software
development and maintenance.

Tools

The fundamental tool requirements deal with tool construc-
tion and management rather than detailed tool operation. These
requirements include implementation in Ada, conformance to stan-
dard coding and management styles, and uniform and consistent
format and communication protocols. The one tool upon which the
entire MAPSE rests is the compiler.

The Ada compiling facility is as fundamental to the MAPSE -

and later APSE - as the MAPSE/database. Since compiling is
required to make any Ada program executable, and since the MAPSE
itself largely consists of Ada programs, the performance charac-
teristics and capabilities of the compiler influence all perfor-
mance characteristics and capabilities of the MAPSE taken as a
whole.

Rehosting and Retargeting

Rehosting and retargeting must cover any change in the
hardware/software host (target) which can affect the KAPSE/MAPSE
software. Such changes may be relatively minor perturbations -
such as a new field release of the underlying operating system
(if present), or a change in the mass storage medium visible to
the MAPSE. On the other hand, there might be a total replacement
of host or target.

The implications of this requirement are far-reaching.
First, every Ada program in executable form must include the Ada
run-time package. In addition, the KAPSE, which must use host
resources with acceptable efficiency, will contain host-dependent
procedures. The design of the KAPSE must therefore include a
partition of the KAPSE into modules so that rehosting will either
involve:

- changes in the run-time package alone, or

- KAPSE recompilation, or

- replacement of some number of KAPSE host-dependent pro-
cedures

depending on the severity of the change in the host.
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The KAPSE will be the most host-sensitive portion of the
MAPSE. The MAPSE tools - and later APSE tools - though written
in Ada, and protected by the KAPSE, will nevertheless require
careful management in order to exhibit the desired rehostability
characteristics.

Testing and Maintenance

The problem of testing and maintaining software can be
briefly stated as: to ensure that the delivered configuration
correctly and consistently provides the required system. The
delivered configuration includes:

- requirements,

- designs,

- source modules and command procedures,

- executables, and

- documents.

Configuration items will be developed, tested, and accepted, but
will change over time and require frequent retest. The MAPSE
requirement is: to provide effective testing capability in a
manner which minimizes life-cycle expense. Testing support is
needed for each stage of the life cycle:

Life Cycle Stage Test Support

Requirements Analysis Tools
Design Requirements tracing tools
Coding Static analysis tools
Execution Dynamic analysis tools
Acceptance Test assessment
Maintenance Re-test drivers and evaluators
Evolution All of the above

Many of these needs will be served by analytical tools: require-
ments analysis and tracing, static code analysis, etc. These are
not to be part of the MAPSE, but are examples of tools to be
found in the more mature APSE.

The following is a list of test scenarios - less those of
advanced APSE tools - which the MAPSE must support:

- Configure a test environment including supporting
stubs, drivers, etc.
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- Test a module in its test environment.

- Apply test scripts to a (relatively complete) program,
Save results for comparing subsequent re-tests,

- Retest a program. Automatically compare with previous
results.

MAPSE ARCHITECTURE PREVIEW

The architecture of the proposed MAPSE is an elaboration of
the concept presented in STONEMAN, and required in the Statement
of Work, as illustrated in Figure 2-1.

Functionally, the KAPSE provides the framework for all com-
munication. Its design is therefore the foundation for the
integrated communication property referred to above. As the
S.O.W. proposes, the database which is the central feature of the
KAPSE serves as the primary medium through which MAPSE components
communicate. In our design, it is the medium through which all
communication flows - programs and users, in all combinations.
It is therefore apparent that the KAPSE design is critical to
various fundamental capabilities of the resulting AIE; in partic-
ular (a) to meet the needs of managers; (b) to develop tool sets
as intercommunicating tool modules; (c) to augment the capabili-
ties of individual users.

The KAPSE also plays the critical role of properly contain-
ing the efforts of host dependence, so that the MAPSE and its
later extensions will enjoy the required stability in the face of
host system modification, or even replacement (the portability
requirement).

In a sense, the KAPSE can be thought of as a virtual operat-
ing system, with special emphasis on intercommunication among
users and their programs. Traditionally, operating systems were
mainly focused on insulating users from each other. While mutual
non-interference is an important aspect of the KAPSE, appropri-
ately controlled mutual contact must also be an objective. This
is the point of view from which the KAPSE design should be exam-
ined and evaluated.

Discussion of the functional aspects of MAPSE tools is
deferred to later chapters.

We shall now re-present the MAPSE architecture to take
explicit account of:

a. user interfaces

b. run-time support of executing Ada programs
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c. that the APSE grows out of the MAPSE by nothing more
than the addition of tools.

Figure 2-2 will be the subject of further refinement and
discussion in Chapter 3.

GENERAL ORGANIZATION OF THE RATIONALE

After this Introduction there follow eight chapters which
present the major features of the design and associated
rationale, feature-by-feature. Of these the first four chapters
deal with the MAPSE operational framework: MAPSE overall archi-
tecture, KAPSE, facilities for program integration and the com-
mand processor. Four more chapters deal with the remaining MAPSE
tools, including the compiler.

Throughout the rationale, use will be made of example pro-
gramming, management or maintenance scenarios with explanations
as to how our design supports their realization.

Over and above achieving the AIE leverages described above,
we focused on producing a design which gives:

- Usability - a helpful, easy-to-understand, uniform,
nuisance-free interface to the user.

- Open endedness - solid foundation for AIE evolution -
in the direction of more varied and more powerful
tools, covering more of the life-cycle phases of the
system and addressing more management concerns.

- Technical reliability - using only proven software
technology, well constructed from the testing and
maintenance point of view.

We believe that all S.O.W. requirements have, as their
rationale, the properties we have discussed. We hope to demon-
strate that our design meets the S.O.W. requirements in particu-
lar, as well as the larger issues to which they are addressed.
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Chapter 3

MAPSE ARCHITECTURE

STATEMENT OF THE PROBLEM

The MAPSE objective can be summarized briefly as "produce a
MAPSE which is both usable for Ada program development and
support and open ended so that it can be extended to an APSE and,
eventually, to a full AIE."

Design Overview

Our design for a MAPSE contains a number of distinctive
features which, in an integrated manner, contribute to the
potentially conflicting objectives of immediate usability and
open endedness. Although these features are discussed in this
and subsequent chapters, it is worth highlighting them here:

- All MAPSE tools are written in Ada in a style which
avoids Ada machine-dependent facilities. Thus any
MAPSE tool may be maintained in a MAPSE, and
transported simply lo:' recompilation.

- The KAPSE is written in Ada. Most KAPSE modules are
written in the same style as MAPSE tools, facilitating
maintenance and transportability. The remaining KAPSE
modules are written in host-dependent Ada and, except
for those which encapsulate host provided services, are
also maintainable in a MAPSE.

- The MAPSE architecture provides for a comfortable
marriage to a variety of popular host computers and
operating systems. These include, of course, the IBM
370 with VM and the Perkin Elmer 8/32 with OS/32. In
addition, there is a natural mapping to such extreme
hosts as a bare machine (without operating system) and
a distributed network of heterogeneous computers. The
IBM 370 mapping to a set of virtual 370's communicating
via VMCF (Virtual Machine Communication Facility) is an
example of such a network implementation.

- The use of a combined hierarchical and relational data-
base structure, the concept of a database object's
distinguishing attributes, and the use of windows and
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capacities provides mechanisms for efficient
configuration, partition, and project management
without the use of cumbersome management tools.

- The choice of Diana, the leading candidate for a common
intermediate representation for Ada, provides the
proper representation for a state-of-the-art compiler
and provides a basis for the development of future
intermediate representation based tools.

- The Virtual Memory Methodology (VMM) system is a proven
technology for defining, creating, and accessing
representations of complex data structures. Its use as
a basis for the Diana implementation provides for
convenient and efficient mappings to a variety of
underlying host storage facilities. Both VMM and the
Diana implementation are available as tool components
for MAPSE programmers.

- The Ada compilation strategy centers around an Ada
Program Library concept which is fully integrated and
supported by the KAPSE database. Using VMM, libraries
may maintain source, Diana, and object representations
of perhaps multiple versions of compilation units, as
well as linked executable versions of programs. The
compilation strategy, fully supporting Ada,
significantly decreases the potentially high cost of
the Ada recompilation rules.

- The compiler itself uses well-understood state-of-the-
art technology to produce efficient object code while
maintaining acceptable compiler performance. User
control is provided over the tradeoffs of object code
efficiency versus compiler speed, and object code
efficiency versus debugging ease. The user may
optionally select among different efficient run-time
models, tailored for particular applications. In
particular, the "static" model, appropriate for
embedded systems with limited memory, reduces run-time
storage allocation costs to zero.

- The compiler architecture depends on a standard tree-
structured representation of Ada (viz., Diana) and the
use of a program transformation model of compilation.
This model, used systematically throughout the
compiler, depends upon the application of program
representation transformations, stored in VMM managed
tables, to perform the bulk of the compilation process.
As a result, the compiler may be easily maintained and
tuned. In addition, the transformation-based code
select phases both produce very efficient code and may
be retargeted in a straightforward way. The tree-
transformation facilities are available as tool
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components for MAPSE programmers.

- The MAPSE Command Language (MCL) provides a simple,
easy to use interactive user interface which, at the
same time, provides experienced users a full session-
control programming language with powerful features.
The Command Processor (CP), which implements the MCL,
provides an "interactive tool shellm as a tool
component which facilitates user construction of
sophisticated interactive programs.

- The source level debugger uses the interactive tool
shell to provide access to an executing program, and to
information about the program stored in the program
library. Each program runs within an "execution
harness" which provides a set of "execution control
points". Each execution control point, implemented
efficiently, represents a place where an external
program may seize control. Via compiler switch, a user
may modify the granularity of placement of execution
control points. The separation of the program and its
execution harness from the controlling debugger allows
for future controlling programs such as functional
simulators, remote debuggers, etc.

- The editor provides a simple access to a powerful set
of underlying facilities. Initially a character-based
editor, the editor can be extended to allow editing of
structured objects. With its clean terminal interface,
the editor functions as smoothly with a keyboard-
printer as it does with a sophisticated display.

- The flexible KAPSE database facilities allow for a wide
variety of configuration and project management styles,
from an "open tool box" model for small, unstructured
projects, to comprehensive support for multi-version,
multi-revision software products, such as the MAPSE
itself. By considering from the beginning the use of
the MAPSE to develop, test, maintain, and deliver
itself, the design is forced to satisfy the twin
requirements of usability and open endedness.

Usability
The MAPSE as delivered to the Air Force will be immediately

usable for the development of Embedded Computer Software for the
IBM 370 and Perkin Elmer 8/32 computers. Indeed, as pointed out
in the MAPSE Generation and Support Specification and the
Computer Program Development Plan, the MAPSE will be used,
following an initial bootstrap, to support its own development,
maintenance, and evolution to a full AIE. Such "immersion", the
use of software to support its own development, has been shown to
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result in a final product which is more robust and reliable than
would have resulted without immersion.

In order to be usable, the MAPSE provides a comfortable user
view of a simple, not unfamiliar, system built utilizing a small
number of concepts. The command language is powerful enough for
the most sophisticated programmer or MAPSE operator, yet easy to
learn and natural for management use. The most important tool in
the MAPSE is the compiler; it generates efficient code to support
both Ada application requirements and the MAPSE itself, which is
built in Ada. A design problem is to reconcile the need for
efficient code with the need for efficient compilation, both in
terms of statements per minute and in terms of avoiding
unnecessary Ada-required recompilation of dependent units. The
remaining tools, especially the debugger, provide the
capabilities that knowledgeable users have come to expect. The
entire MAPSE is a production quality software system, providing
reliable service with minimal system overhead.

Open Endedness

The MAPSE is open ended in order to support both short term
extension to an APSE and longer term extension to an AIE. Short
term open-endedness, providing an Ada Programming Support
Environment, is accomplished by including facilities for
portability, tool introduction, manager-controlled management,
and APSE administration.

Short Term.

MAPSE portability potentially involves both the retargeting
of the compiler and the rehosting of the entire APSE. The
compiler is built in a manner which isolates target-dependent
portions and facilitates their systematic parameterization. A
future operational APSE may well simultaneously support Ada
compilers for several different targets. Tool rehosting is
reasonably straightforward: tools are coded in "target
independent" Ada, with all target-dependent services provided by
the KAPSE. (Note that Ada is a machine-independent language in
which one can write machine-dependent programs; one must be
careful in order to write target-independent Ada.) Thus tools
need only be recompiled in order to be moved. Rehosting of the
KAPSE itself is not as straightforward. The KAPSE, although
coded in Ada, is clearly host dependent. Indeed, KAPSE
efficiency comes in part from judicious use of substrate
operating system and file system facilities. KAPSE rehosting,
then, requires both a reorganization (and, perhaps, a partial
reimplementation) as a result of new host dependencies, plus a
remapping of the KAPSE on a new operating system substrate.
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An approach to tool construction is the "chip set" model,
which provides the beginning of a conceptual basis for a software
parts technology. Tool granules, analogous to integrated circuit
chips, are categorized into "logic families" which have well
defined packaging conventions and standardized *data in", "data
out", and "control" lines. The initial MAPSE tool functions are
not provided by monolithic tools; rather, they are provided by
appropriate compositions of tool chips. New tools are created by
constructing new tool chips if necessary, and composing them with
existing tool chips by means of the tool-KAPSE virtual interface,
providing new tool functions. Examples of tool chips to be
described later include the lexical analyzer, the parser, the
pattern-replacement transformation facility, and the interactive
tool shell.

The APSE approach to project and configuration management is
that "managers should manage". There is no built-in, system
mandated management style. Rather, a manager selects an
appropriate management framework in which work assignments may be
carried out in a controlled manner. Alternatively, a manager may
develop a framework specially tailored to the problem at hand.
Management frameworks for different management styles, from the
"open toolbox" model, through a full model for the support of a
multiple-version, multiple-revision product, are provided. Thus,
the APSE conveniently supports large, long-lived projects as well
as small, short-lived ones.

Stoneman barely hints at the problems of APSE operation and
administration, yet these problems are considerable. An APSE
does not remain static: projects come and go, underlying
hardware changes occur, systems crash at inconvenient times.
APSE administration facilities include the ability to define new
categories of database objects with their associated attributes
and operations, to reallocate system resources as appropriate,
and to authorize new instances of the various classes of users.

Long Term.

In the longest-term extension of a MAPSE, a complete Ada
Integrated Environment will deal with issues beyond the direct
support of the programming process. Support for the complete
software life cycle requires, for example, tools for generating,
modifying, and verifying requirements and specifications, and
this, in turn, requires requirement and specification languages.
This causes an AIE to be potentially multi-lingual. Full support
for ECS development requires some form of on-target debugging,
which in turn requires a (potentially) distributed AIE, perhaps
utilizing either a network or some form of detachable tool. The
very rapid development of support architectures and programmer
workstations requires the ability to consider a network of
personal computers as a possible AIE host. Similarly, the rapid
developments in the field of office automation requires that such
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--
facilities be made available either within the AIE, or by means
of a gateway to an office information system. It is worth
observing that programming is an activity which typically is
performed in an office. Thus, the facilities of an office
automation system most certainly will be of benefit to
programmers. A future AIE will provide support for the many
different types of work centers associated with a software
project, such as documenting, accounting, training, and
contracting, as well as programming and managing.

Future AIEs will provide support for a variety of different
types of work centers, patterns of coordination and cooperation
among such centers, and facilities for reorganization as a result
of organizational change or of technology insertion.
Consequently, current MAPSE development must be viewed in the
context of providing a base for such future systems. Our MAPSE
design does provide such a base.

STRUCTURE OF THE MAPSE

Chapter 2 presented a preview of the architecture of the
MAPSE, starting with the Stoneman ring diagram (Figure 2-1)
illustrating the hierarchy of level 0, KAPSE, MAPSE, and APSE,
with added emphasis for lines of separation and interface. This
figure was elaborated (Figure 2-2) in order to make explicit the
user-MAPSE interface, and the provision of run-time Ada support
for executing Ada programs. Figure 3-1 re-presents Figure 2-2,
noting specifically

- the database portion of the KAPSE,

- the host dependent implementation of portions of the
KAPSE,

- the necessity of separate run-time support for each Ada
program, and

- the possibility that separate Ada programs might, in
fact, run on separate hosts.

The Host-Independent Structure

If we look more closely at any one Ada program, be it user
program, tool, or the database, we see that it consists of
layers: the run-time system, the program itself, and the
encapsulating KAPSE layer (Figure 3-2). The interface between
KAPSE and program is the SOW-mandated virtual interface. This
interface, defined by Ada package specifications, provides access
to those KAPSE-defined interprogram communication, control, and
database access facilities actually used by the program. These
pieces of the KAPSE are linked with the program in order to
produce the "enKAPSElating" layer. The host, not explicitly
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Figure 3-2

With the structure of a single program in mind, we can

redraw Figure 3-1 at some instant in time, Figure 3-3, when

- User A is typing a command,

- User B is running the compiler,

- User C, in the middle of editing, has invoked a
database inspection program called LISTNAMES,

- User D is running two tools, with the output of one
feeding the input of another, and

- User E is debugging an ECS application.
Figure 3-3 shows a variety of relationships between cooperating
Ada programs:

- A's Command Processor is unrelated to B's Command
Processor. They are unsynchronized unless they should
attempt to access a common database object.

- C's Command Processor has invoked the Editor. The
invoking program is suspended until the invoked program
completes.
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- B'S Command Processor has created a background job,
which executes concurrently with the creating program.
D's Command Processor has created a co-routined
execution of two strongly interacting tools.

- E's Debugger is controlling an ECS application program.
A controlling program may start, stop, or modify a
controlled program.

- BAS Compiler has requested service from . the
KAPSE/database in order to provide file access. To
avoid cluttering the figure, all such requests have not
been shown. In fact, terminal input/output also
appears as request for service from the database.

An important MAPSE feature not illustrated in Figure 3-3 is
import/export communications with the environs of the MAPSE.
Such communication is essential in order to allow delivery of
releases of MAPSE-produced software, either ECS software or new
revisions of the MAPSE itself, and transfer of software between
MAPSEs on different machines.

Thus, the overall structure of the MAPSE can be seen to
consist of a collection of cooperating Ada programs: the
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database, tools, user programs, and ECS applications under
development. This cooperation is mediated by the KAPSE which
provides a host-independent interface supporting multiple Ada
programs and a host-dependent interface whose character is
determined by the mapping of the KAPSE to the underlying host
plus operating system. The single shared database is accessed
via the MAPSE interface package in the same manner as other KAPSE
services are accessed. Provision of a single database provides
for synchronization, enhances security, improves efficiency, and
simplifies the problem of mapping the database onto the
underlying host operating and filing systems.

The Host-Dependent Structure

The MAPSE depends, in all respects, on the quality of the
KAPSE, as visible at the KAPSE-MAPSE interface, and as invisible
in the KAPSE implementation. As seen at the KAPSE-MAPSE
interface, the KAPSE provides the services of a portable
operating system and database designed to support multiple
cooperating Ada programs. Such a KAPSE could be implemented
directly on a bare machine host or on top of an existing
operating system. A bare machine implementation avoids the
problems of mating with nonstandard operating systems and allows
a KAPSE with no host-specific idiosyncrasies. However, a bare
machine implementation requires more software to be written than
does a host operating system implementation, and, more seriously,
requires that the host machine be dedicated to the running of the
MAPSE. Although perhaps acceptable for a machine like the Perkin
Elmer 8/32, this is unlikely to be acceptable for an IBM 3033.
An implementation on top of a host operating system allows
simultaneous non-MAPSE use of the host, use of the host file
system to support the database and import/ export functions, and
avoids the necessity of writing code to perform time-sharing,
address space management, etc.

The design of a MAPSE must be considered as two parts, the
MAPSE toolset architecture, and the KAPSE architecture. The
toolset architecture is discussed at length in the next section.
Briefly, it involves the coding of tool components in a host-
independent subset of Ada, interfacing these components with each
other according to MAPSE-standard conventions, and subjecting the
resulting tools to appropriate MAPSE-standard management and
control.

The architecture of the KAPSE depends crucially on the
successful mating of the KAPSE to its substrate host. The S.O.W.
specifically identifies two host systems: The IBM 370 with the
VM operating system, and the Perkin Elmer 8/32 with the OS/32
operating system. We feel, however, that it would be quite naive
to consider just those two systems. Rather, we have considered
those two, a variety of conventional machine-operating system
pairs, bare machine implementation, and network implementation.
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Our architecture is, at the same time, optimal for both the 370-
VM and 8/32-OS/32 pairs and efficiently implementable on these
other hosts.

The KAPSE architecture is such that services which are
provided by a host may be used directly or indirectly to
implement internal KAPSE package specifications. As a simple
example, the host operating system clock is used to implement the
KAPSE time facilities. Since the KAPSE architecture does not
assume a host operating system, it can be implemented on a bare
machine. Since the KAPSE architecture anticipates a variety of
specific hosts, there is a natural mapping of the KAPSE onto
those hosts.

Figure 3-4 shows the mapping of the MAPSE onto a bare
machine. In this case a full KAPSE is implemented, including a
complete time sharing multiprogramming monitor, the low-level
operating system support routines, a file system, and the
underlying device control functions. Although such an
implementation is possible, it is not desirable for the reasons
previously mentioned.

Figure 3-5 shows the mapping of the MAPSE onto the Perkin
Elmer OS/32 operating system. In this implementation each Ada
program is run as a separate OS/32 task. Note that each Ada
program, in turn, has its own Ada run-time system, including
support for its own Ada tasks. OS/32 task functions are utilized
to implement time slicing and management, interrupt handling,
separate address spaces with shared segments, and generalized
inter-task communication. The OS/32 file system supports
import/export, provides database storage, and an OS/32 task load
module. This implementation is the best choice since it is done
at lowest cost and highest efficiency because of 0S/32
utilization, and allows concurrent use of MTM and other non-MAPSE
activity.

The MAPSE implementation on VM is more subtle. The initial
observation is that, since VM provides a user a virtual 370, a
bare machine implementation on such a virtual machine should be
used. This approach requires the implementat rn of the "bare
machine" functions previously mentioned and requires allocation
of the entire MAPSE to a 16 megabyte address space. More
seriously, a multi-access, secondary virtual storage operating
system does not perform well on VM/370. Indeed, IBM itself
discourages the use of TSO on VM. Thus a "bare machine"
implementation on a single VM is a poor choice resulting in high
cost and complexity, bad performance, and poor utilization of the
underlying VM/370 system.

A second approach to a VM implementation might allocate a
single VM to each Ada program. This approach, although initially
attractive, contains a fatal flaw: under CP, one virtual machine
cannot create another virtual machine. Thus, new Ada programs
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cannot conveniently be created.

Figure 3-6 represents the proper architecture, one virtual
machine for each MAPSE user, with the database manager being
considered a user. Thus, a new virtual machine need only be
created when a new user is introduced to the system, which is, in
fact, the VM/370 convention. This approach allows only the
database virtual machine access to database devices reducing the
VM/370 physical input/output "bottleneck", allows an ample 16
megabyte address space for each user's multiple Ada programs,
uses CP functions to support time sharing and user response, and
utilizes the Virtual Machine Communications Facility (VMCF) as a
high speed memory-to-memory inter-program communications
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protocol.

We are confident that this M4APSE design can be implemented
in a straightforward manner on such modern machine architectures
as local networks of personal machines. The 370 implementation
is, in fact, such an implementation: the host is a network of
virtual 370s, utilizing VI4CF as the network protocol.

TOOLSET ARCHITECTURE

The MAPSE will be extended to an APSE by the addition of
tools. In this section we examine those characteristics of the
MAPSE which allow for the orderly and cost effective addition of
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tools.

Before proceeding, it is important to define "tool". We use
tool here not in the sense of an isolated, individually-owned,
hand-held tool, but in the sense of part of the tooling needed to
carry out a cooperative enterprise. Tools are the product of
tool engineering "a branch of engineering in industry whose
function is to plan the processes of manufacture, develop the
tools and machines, and integrate the facilities required for
producing particular products with minimal expenditure of time,
labor, and materials." (Webster's Seventh New Collegiate
Dictionary) Our emphasis here is on the development, integration,
distribution, and management of cost-effective software tools.
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Tools, as we have defined them, are not operated in
isolation but interact with other tools. In order to ensure the
orderly development and accurate functioning of interacting
tools, tool interfaces must be developed, distributed, and
managed in much the same manner that tools themselves are.
Well-designed, well-managed tool interfaces ensure
interoperability of tools. Tool interfaces serve the same
functions as jigs and fixtures in manufacturing, which *set the
relationship between the work and the machine tool" [Sedlik 70]
and in so doing:

"1) Ensure the interchangeability and accuracy of parts
manufactured,

2) Minimize the possibility of human error,

3) Permit the use of unskilled labor, and

4) Reduce manufacturing time." [Sedlik 70]

Software tool development has often been costly due to the
limited ability to re-use existing tools and tool pieces. The
following tool characteristics reduce both initial tool cost and
support costs:

- Availability as a ready-to-use package from an
organization which will support it.

- Portability, so that the same tool may be used on
different hardware and in different operating
environments.

- Adaptability to different users so that the same tool
may support different operations. For example, a text
editor may be used both for programs and documentation.

- Modifiability as the need for extensions is recognized.

- Composability, so that several tools or tool pieces can
be easily combined to form new tools. For example, a
text editor and a sort program can be combined to
provide a concordance generator tool. See [Kernighan
76] for other examples.

As the preceding list illustrates, a cost-effective tool has
reasonable initial cost, does not easily become obsolete, and
spawns related tools cheaply - such related tools share
development costs, have complementary human engineering, and
represent a smaller body of distinct code for a support
organization to maintain.
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Tool interfaces which are well defined and well managed
encourage tool use and tool adaptation. Adaptaton at the level
of the tool interface can accomplish:

- Compatibility with other tools and data structures.

- Provision of standard user interfaces.

- Specialization of tool functions.

- Pre- and post-processing of inputs and outputs.

- Encapsulation to filter out bad inputs, provide help
facilities, usage logging, etc.

- Extension of functional capabilities.

- Human engineering for higher or lower skill levels.

- Compatibility with different hardware and operating
environments (e.g., interactive graphics vs. text
batch).

Not only will there be many installations of the MAPSE, but
we can expect that these installations will in time be networked
both to one another and to other non-APSE equipment. In
particular, we expect to see gateways between APSEs and both
existing networks and office automation systems. The tools which
are built on one MAPSE should be easily portable to another
MAPSE. Moreover, tools on interconnected APSEs should be able to
interact as easily as tools on a single MAPSE via a common tool
interface. Lastly, the interface adaptation mechanisms should
accommodate the interconnection of APSE-based tools to "foreign"
systems, and to tools written in "foreign" languages (e.g.,
JOVIAL).

A tool will be provided to its users by a tool distribution
organization or a "tool distributor" which is responsible for the
tool. This organization could be responsible for tool
development and maintenance but would more commonly interact with
separate tool development and maintenance organizations. The
tool distributor provides not only the tool but whatever
documentation, help facilities, usage and fault logging is
appropriate. The distributor may withdraw the tool from
distribution or "recall" faulty tool models. These functions of
the distributor cannot be reliably accomplished unless a link is
maintained between the tool and the distributor. This link might
be maintained by keeping "a file of filled out warranty cards" or
by providing each tool with a distributor interface. This
interface would be invisible to an ordinary tool user but would
provide two-way communication between the tool and its
distributor for fault logging, update of help facilities, etc.
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It is clear that any given tool may have many interfaces.
It is essential that these interfaces be specified separately
from one another for maximum composability and adaptability. For
example, it may be desirable to log the error messages produced
by the compiler. If the error message interface is "buried" in a
generalized text output interface it will be difficult to build
the error logger. Moreover, the error-logger builder would then
have to know more about other compiler text outputs than is
necessary.

Cnmpil ERROR OUTPUT TEXT

Before mplrOTU
OUTPUTS

ERIOR

INTS opl TEXT
After ccuile OUPU

NO-TXT
OUTPUTS

Figure 3-7

Figure 3-7 suggests the diagrams which show the
interconnections between integrated circuit chips. Electronic
hardware costs have come down because engineers can design the
interconnections between a small number of chips rather than
designing circuits of a much larger number of discrete
components. This is successful because families of chips with
standard logic levels, rise and fall times, etc., may be reliably
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interconnected with one another. In addition, there are chip
sets which are meant to complement one another in the building of
related applications.

A software "chip set" architecture is beginning to emerge
which allows the reliable interconnection of software pieces.
The tools of the MAPSE form such a chip set.

Definition of 'Toolo

In one sense there is nothing special about a tool in the
MAPSE. All Ada programs, be they user programs or tools, are
invoked from other Ada programs or tools by means of the same
KAPSE mechanism. Similarly, there is no distinction in mechanism
between user command language scripts and command language
scripts which act as tools. The special nature of a tool, or an
Ada fragment which can serve as a tool component, is its
management control. Tools and tool components are written
according to MAPSE-standard tool implementation conventions and
are subjected to MAPSE-standard management and control.

Since Ada is an implementation independent language in which
one can write implementation dependent programs, MAPSE tools and
tool components must be written in a subset of Ada which avoids
implementation dependencies. The result of this discipline is
that tools and tool components are portable simply by
recompilation. Tools must be written with a careful use of
default input and output in order to facilitate coroutining and
input-output redirection by the Command Processor. Each tool
must be provided with a text "help file" in order to utilize the
Command Language HELP command. The tool must be stored in an
appropriately mnemonically named database object stored in an
appropriate tool portion of the database. Tools must be
parametrized in order to allow suppression of non tool-invariant
output, such as time reporting, version numbers, execution
statistics, and representations of internal names, in order to
allow semiautomated testing by means of output comparison. These
tool management issues will be discussed in more detail later.

Following the "chip set" model, tools may be interconnected
in a variety of ways. Examples of coroutined interconnection are
given in Chapter 6. Of particular concern are the reusable tool
components which facilitate the construction of new tools. These
are presented in the next section.

Tool Components

The tools provided in the MAPSE are spelled out in the
S.O.W. as Editor, Compiler, Linker, Debugger, and Command
Language Processor. These are all described in detail in
subsequent chapters. A variety of management facilities, such as

3-18

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



configuration management, are also identified in the S.O.W. and
described in subsequent chapters. Of interest here is the S.O.W.
requirement that

"...Software performing a single function required
(or potentially required) by more than one system
component shall be designed to be reusable to the
maximum extent possible..."

[S.O.W., 4.1.1.5]

Although each of the modules within each tool, as a result of the
tool coding standards, meets this requirement, certain modules,
which we call "tool components" are of particular interest. The
major tool components, along with brief descriptions, are:

- Lexical Analyzer - a finite state machine Ada lexical
analyzer.

- LEXSYN - An LR based Ada syntax analyzer which produces
an Abstract Syntax Tree (AST) program representation.

- SEM - An Ada semantic analyzer which transforms an AST
into a Diana program representation.

- Diana - An Ada package which defines and implements the
Diana program representation abstract 4ata type.

- Pattern Matcher - a table driven pattern-replacement
transformation facility for Diana program
representations.

- Execution Harness - A generalized mechanism for program
control.

- VMM - Virtual Memory Methodology, a generalized access
method used to implement Diana, as well as other system
components.

- Interactive Tool Shell - A general purpose interactive
user interface derived from the Command Processor.

The Lexical Analyzer, LEXSYN, and SEN are described in Chapter 8,
as is Diana, which has its own rationale in its reference manual.
The Pattern Matcher, Execution Harness, VMM, and Interactive Tool
Shell are described below.

The Pattern Matcher.

The Compiler utilizes Diana as a standard tree-structured
representation of Ada compilation units, and depends on a Diana-
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to-Diana transformation model of compilation. The advantages of
this architecture are described in Chapter 8. Transformations on
the Diana representation are performed by the use of a general
purpose pattern matcher which is driven by tables of stored Diana
transformations. These tables are systematically maintained by
the Virtual Memory Methodology system.

Over the past several years, there has been a growing
interest in the so-called "source-to-source transformation"
paradigm [Loveman 77] for program refinement, development, and
compilation. Although not a part of this MAPSE effort, the use
of Diana representation and the availability of the Pattern
Matcher will facilitate the application of this ongoing work to
Ada as the MAPSE evolves to an AIE.

The Execution Harness.

The Execution Harness is not a tool component, rather it is
an Ada program control situation which results from the
cooperation between the compiler and the KAPSE. At compilation a
set of "execution control points" is identified. Each execution
control point represents a place in the program where an external
program may seize control. For example, the Debugger places
breakpoints at execution control points. At an execution control
point a controlling program may stop, modify, or start a
controlled program. The idea of execution control points allows
separation of the concept of program control from the concept of
debugging. Although in the MAPSE the only controlling program is
the debugger, in the future there will certainly be function
simulators, remote debuggers, and other forms of controlling
programs.

Functional simulation provides that, at each execution
control point, a functional simulation execution monitor gains
control of the running program. The monitor provides a simulated
hardware environment for the running program and will perform
actions such as advancing a "pseudo clock" based on anticipated
target machine characteristics, simulating Ada tasking and timing
in terms of the target environment, providing simulated target
input conditions, and updating the external model of the target
environment.

Future development of the MAPSE will certainly involve, for
example, ECS software development for microprocessors. Such
programs, if written following the tool coding conventions, may
be debugged in the MAPSE. They may then perhaps be run under
control of a functional simulator. At some point, however, they
will have to be executed on their appropriate microprocessor.
This will require, at least, the retargeting of the Compiler for
that microprocessor. Our design, however, allows more. Assume
that a microprocessor development system is attached to the host
machine. A network-like implementation of the MAPSE will allow
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programs under MAPSE control to be executed on the development
system, while the execution control point concept will allow the
debugger to interface with and debug the running program on the
development system.

Virtual Memory Methodology System.

MAPSE tools must be able to preserve data structures within
the database in order to communicate with other tools or with
subsequent activations of the same tool. In general, it cannot
be assumed that the address space of the host machine will be
adequate to keep such data structures entirely within memory
while they are used. The Virtual Memory Methodology (VMM) system
provides both a means of representing the data structures used by
tools in a consistent and efficiently-accessed external form, and
a means of overcoming address space limitations on the size of
data structures. In addition, VMM provides aids to debugging and
communication between hosts.

The VMM system is a technique for defining, creating, and
accessing representations of data structures. The use of the VMM
system to implement a data structure in Ada provides the
following capabilities:

- A permanent, directly accessible representation of an
instance of a data structure may be created in the
KAPSE database that can be efficiently accessed by any
MAPSE tool which uses the same definition of the data
structure.

- Since software memory management is part of the access
method, the direct addressability of such data
structures is independent of the actual addressing
range of the host system.

- It is possible to perform automatic conversions between
a directly accessible representation of a data
structure and either of two host system independent
linear representations:

- a human-readable text, which is primarily of use
for debugging and testing, and

- a compressed binary form, which may be used to
transfer a representation between hosts. While
the human-readable form could also be used for
the latter purpose, compressed binary is much
more compact and uses fewer resources for the
conversion process.
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Interactive Tool Shell.

Figure 3-8 represents the overall architecture of an
arbitrary interactive tool. The central component, the
Interactive Tool Shell, provides complete support for a user
command environment including Command Language interpretation,
processing of filed scripts which are parameterized sequences of
Command Language statements, input-output control including
piping and arbitrary redirection, and session record maintenance.
As the Interactive Tool Shell is used in the implementation of
the Command Processor, Chapter 6 contains details of its
implementation and the interactive language which it processes.

The shell assumes line-at-at-time input and produces line-
at-at-time output. A user keyboard device appears, as a result
of the low-level KAPSE terminal input mechanism, as a data base
object of a category appropriate to the particular keyboard.
Naturally, any facilities which are built in to the keyboard such
as local editing, are available to the user. The database object
which represents the keyboard is processed by the line editor
pseudo terminal interface. This line editor implements system-
wide local line editing conventions including erase character and
erase line functions. Separation of the line editor from the
physical keyboard allows arbitrary text data base objects, of the
proper category, to serve as substitute input devices. Similar
considerations apply to output. Thus, the Shell supports both
batch and interactive input-output, and is extendable to support
display input-output devices. Indeed, since the shell is just an
Ada program a user may potentially have several shells running.
This requires a bit of care as the user slews from one shell to
another, but can in the future be supported conveniently by a
display system allowing multiple windows, one for each shell,
presented side-by-side on one display, on several displays, or
overlaid in whole or in part. This ability to support
asynchronous activity at the user level naturally allows, for
example, a compilation to proceed in parallel with an editing
session in a manner which is invisible to the tools.

The Interactive Tool Shell maintains, as a data base object,
a session record. This record contains the interpretive context
of command language evaluation, as well as references to all
currently visible data base objects. Thus, the saving of the
session record allows a user to suspend a session and return to
it at a later time.

Particular interactive tools such as the editor and debugger
have their own application specific tool functions which are
incorporated into the framework provided by the Shell. In
addition, the Shell provides the ability to run an arbitrary Ada
program. This is the mechanism by which, for example, the
Command Processor invokes the Editor. Indeed, the Command
Processor may invoke itself, recursively, providing dynamically
scoped work sessions. The Command Language provides a uniform
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facility for program invocation, which does not depend on the
user knowing whether the program is, in fact, a script, a built-
in facility, a MAPSE tool, or an arbitrary program.

Keyboard Di splay

KAPSE terminal input KAPSE terminal output

Line Editor Line Editor
Pseudo terminal Pseudo terminal
Interface Interface

DB object DB object
Sequential Sequential
character character

Functions

Session
etord

~Arbitrary
Program

Figure 3-8: An Arbitrary Interactive Tool
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TESTING CONSIDERATIONS

In this section, we examine those aspects of the MAPSE
architecture which address the testing requirements listed in
Chapter 2. Many requirements of testing are directly addressed
by sections of STONEMAN and the S.O.W. Certainly, the image of
the expanding toolkit - as MAPSE becomes APSE - should include
the analytical tools desired for requirements tracing and static
debugging [STONEMAN, 7.A.8 and 7.A.10]. In the same vein, our
design offers choice among simultaneous, parallel versions of
modules and thereby provides a natural means of configuring
assorted test environments [S.O.W., 3.2.3 and 3.2.4]. On the
other hand, quite a number of test requirements are met by
aspects of our particular design from the viewpoint of the more
general system which the STONEMAN describes and which the S.O.W.
calls out as general design goals for any APSE. As we revisit
the test scenarios of Chapter 2, we show how the architectural
aspects of our MAPSE design respond to the stated needs. In so
doing, we touch on testing needs (less the deferred analytical
tools) of elements of the evolving system as they progress from
unit testing, through acceptance, and beyond to re-certification
after modification.

The first stage in unit test is not application of a
debugger, but the configuring of an appropriate test environment.
This includes not only stubs (which our Linker generates on
request) [S.O.W., 4.1.11.3], but test drivers, and possibly
changes to program-internal tables. For example, comprehensive
testing of the Virtual Memory Methodology system requires an
artificially small set of real memory resources to exercise
software paging activities in a reasonable fashion. These needs
are directly addressed by system-provided features for selection
from multiple versions - in this case a version to exercise the
system as opposed to a resource to support an arbitrary Ada
program.

Once the module is housed in an appropriate test
environment, the MAPSE debugger may be used to control execution,
inspect and modify program variables, etc. The rationale of this
MAPSE tool is the subject of Chapter 9.

Once one or more such units have been tested, a relatively
complete program module can be subject to more extensive testing.
Often, one wishes to apply a number of test cases, which are
rightly generated at the design-stages of a project.
Furthermore, most test stimulus (of MAPSE components, at least)
is applied through the default input file. Testing requires
automated application of prepared test cases. The need for
application of prepared test scripts is addressed by redirection
of standard input, taking it from a database object rather than
the terminal. The need for (probably repeated) procedural
application of a sequence of such cases is provided by a feature
of the MAPSE Command Language and its Processor, whose rationale
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is the subject of Chapter 6. Scripts may be prepared and applied
to the MAPSE Command Processor in order to apply a prepared test
suite.

The success of a test is determined by examining results.
Recall from our earlier discussion on toolset architecture that
tools produce a number of separate results: user visible text
and/or binary, as well as system-recorded fault and usage data.
All such data must be inspected in order to accept the tested
program, and must be retained for retesting in the future. The
saving of output is facilitated by redirection of default output
to a database object which can be named in the MAPSE Command
Language. The results of such program acceptance testing are
nicely retained as a composite database object and include input,
command script, and accepted outputs for each case.

Once initial testing of a program is successful, we
anticipate the retesting that is required. Over the life-cycle
of a piece of software, most testing activity is regression
testing. Bell Labs developed an automated software testing
system in which "regression testing was done using less than 20
percent the machine time of conventional approaches and...can be
rerun at any time using clerical personnel" [Jessop 76]. Our
design supports such a methodology. Recall that acceptance tests
and results were retained as composite objects. These tests can
clearly be rerun to form new composite objects, and scripts used
for acceptance testing can be augmented to compare the composite
objects and to list discrepancies. During this mode of testing,
it is necessary to remove test dependent information, such as
time of day, from the output. The MAPSE-standard coding style
for tools facilitates the removal of this information.

This form of testing presents an attractive way of
minimizing the cost of regression testing and thereby, life cycle
testing cost as well. It should be improved, however, by
eventual addition of a "closed-loop" test driver: one which
considers current test results before supplying more script to
the MAPSE Command Processor.
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~Chapter 4

KAPSE

KAPSE APPROACH

The KAPSE and database as described in STONEMAN and required
in the S.O.W. are the core elements in the objective to achieve
an Ada Integrated Environment. In a sense, the KAPSE/Database is
the central connector and controller of a "data bus" onto which
all MAPSE tools, as well as users, may be attached.

The design demands placed on the KAPSE are particularly
stringent. A very large number of the S.O.W. requirements
directly, or indirectly depend upon it. These include: manage-
ment and configuration control; database access and control;
addition of new tools; portability in terms of maximum use of
Ada; encapsulation of host dependencies and provisions of virtual
machine interfaces; efficiency; robustness in the light of human,
software or hardware failures, et.al. This would be a tall order
for any operating system.

A conventional file and directory system, with separate con-
figuration management tools, an access control table, special or
ad hoc interfaces for MAPSE tools, and unbounded storage for his-
tory would not suffice and would not meet the S.O.W. requirements
for flexible definitions of configurations, partitions, roles,
attributes, categories, history, etc.

Our design approach has been to postulate a small set of
integrated concepts that would encompass both the stated require-
ments for a MAPSE, and the long range requirements for a complete
Ada Integrated Environment. These concepts center around a
description of the database and its objects in terms of "distin-
guishing attributes." These objects are viewed and controlled
through "windows" on the database that convey rights of visibil-
ity, control and manipulation.

Because of the importance of these concepts to our design,
this chapter presents an extended technical introduction and
gives insight into how many of the S.O.W. requirements are satis-
fied. The central rationale is one of proposing a minimum set of
concepts and facilities which will span all explicit and implied
requirements. The first half of this document presents the
selected approach, which should be evaluated against our asser-
tion of minimal complexity, the STONEMAN and SOW requirements,
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and the list of implied requirements below.

One implied requirement may be named "learnability". The
system must be usable with a modest start up cost by persons with
no more experience than introductory programming training. This
implies a need for a very basic core of capabilities sufficient
to get started, and for appropriate defaults, help files, etc.
The system must also be "learnable" by sophisticated users from
other environments. Here the implied requirement is to avoid
"alien" concepts and to incorporate the most powerful ideas from
such systems as UNIX.

No requirement on the KAPSE/database is of greater impor-
tance than reliability. It is essential that software developed
in the first year of a 20-year system life-cycle be just as well
supported, documented, and accessible as the final version. A
reliability of 99.99% is inadequate. This implies rigorous low-
level protection/synchronization mechanisms, comprehensive his-
tory tracking, a highly integrated approach to database control,
management, and configuration control, and active database pro-
tection by the KAPSE.

Learnability and database integrity depend not only upon the
KAPSE, but also upon the databases (composite objects) built with
the KAPSE to store the data of specific projects. This
motivates the differentiation between "distinguishing" and "non-
distinguishing" attributes, the introduction of "capacities" as
named abstract roles, and "private objects" as a mechanism for
project-unique controls to be positively enforced.

This design may be characterized by envisioning the KAPSE as
the active part of the database, rather than envisioning the
database As the storage part of the KAPSE. This view, which will
be evident in the following sections, considers the various
active program contexts comprising the KAPSE to be elements of
the database. The KAPSE guards the entire database, includine
those active components which implement the KAPSE. This was
selected as the most promising approach to developing a design
without security loopholes.

THE KAPSE AND THE DATABASE

Most KAPSE functions operate on the database, and the pri-
mary responsibility of the KAPSE is to protect the database.

The database includes the KAPSE specifications and implemen-
tations. The services provided by the KAPSE are the sole connec-
tors betwepn storage parts of the database, users, and active
parts of the database, such as the KAPSE archive management and
history keeping functions. For convenience of exposition, an
outer, passive, view of the database structure is presented
first, below.
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DATABASE TREE STRUCTURE

The database is a composite object whose structure is
defined in terms of sub-objects which may, in turn, be composed
of sub-objects. Thus the database can be viewed as an object
tree [STONEMAN, 4.B.1].

R

the database object
('R' for root)

Q or Q objects in the database

O composite objects

Q leaf objects

A sub-object of an object is called a component

of the object. Leaf objects have no components.

Figure 4-1
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KAPSE operations can modify the tree structure of the data-
base -- by the creation of new objects and the deletion of old
ones.

WHAT IS STORED IN THE DATABASE

a. Simple data objects -- documents, source code, text
data, help files, etc.

b. Composite data objects -- Ada libraries, directories of
tools, etc.

c. Executable objects -- programs, together with all of
the context information which they require to run.

d. Executing objects -- the same as b), but in the state
of execution. Executable, or executing objects are
called program context objects.

e. Device objects -- objects which represent a physical
device to the KAPSE. Every KAPSE function which serves
or drives a device, such as a terminal operates on the
corresponding device object.

f. User context objects -- a composite object which con-
tains windows and other data associated with a user.

g. Window objects -- a special class of objects which
defines the access paths through the database, as
described later in this chapter.

LEAF OBJECTS

Leaf objects of the object tree are either windows or simple
data objects. The principal characteristics of simple data
objects are:

- the semantics of the internal structure is not relevant
to KAPSE;

- can be manipulated by Package INPUTOUTPUT;

- has a specific physical layout (used by Package I/O) --
direct access, indexed access, terminal I/O;

- is a unit of history keeping.

DATABASE ACCESS STRUCTURE

The access structure of the database at a given time is
defined simply by its tree structure and window collection.
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Each window provides access to all or part of a particular
target object.

2 3

d.5+1+3\e.4 551+3+6

f* 0 RS12

to its target

a.4-R-2 W window

g. 13+8
Note: every access path begins with a window

Figure 4-2

A program gains access to some designated object via an
access path which begins with a window in the program context.
Associated with each window is an access capacity, which deter-
mines the kind of access permitted within ts target object.
Therefore, two different access paths followed from the same win-
dow to the same end object will imply different restrictions on
what operations can then be performed upon it.
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OBJECT NAMES, OBJECT ADDRESSES

The name of every object is understood as relative to its
enclosing composite object in the object tree, and distinguishes
it from all other components of the same composite object. A
complete unique name would start at the root of the database, and
successively select the component which encloses the object of
interest.

OE HENRY

The name rule stated above is satisfied.

Figure 4-3 -

While every object has a unique name ISTONEMAN,4.A.31, it can be
addressed in many different ways. The description of an access
path whicih ends with an object is an address of the object.

4-6

TR I AQ * 733 CONCORD AVENUE • CAMBRIDGE. MASACHUSETTS 0213• e (617) 661-1840



TR

possible access paths WObject addresses (assuming
that object numbers are
object names)

a. 4+R-*.2 4.2

b. 4-R-3-8 4.3.8

C. 13+8+12 13.12

d. 5-11-13 5.13

e. 5-11-13-8-12 5.13.12

f. 4+R+3+8+12 4.3.8.12

g. 13+8 13.

Figure 4-4

Since windows point at their targets, the addresses do not need
to specify the step from a window to its target. Therefore, the
addresses shown on the right are generally shorter than the
corresponding path descriptions on the left [STONEMAN, 4.A.4].

In lines c, e, and f, there are three different ways of
addressing of object 12. Given a program operating in context
11, the KAPSE would locate object 12 in response to the address
13.12; a program running in context 1 could use either the
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address 5.13.12 or 4.3.8.12 to reach object 12, but with two dif-
ferent sets of limitation as to what operations it could perform
on object 12 after the object was found. In line g, the terminal
dot in the address signifies that the target of the window is the
object addressed.

DISTINGUISHING ATTRIBUTES AND NAMES OF OBJECTS

Every object is characterized by values for its attributes.
In particular, its name consists exactly of the values of its
distinguishing attributes, written in a labeled aggreate nota-
tion, or in a pre-determined order separated by dots [STONEMAN,
4.A.4 and 5.A.1].

All the components of a given composite object are charac-
terized by exactly the same set of distinguishing attributes, and
the values taken together represent a name used to select the
component.

composite object representing
a related group of configuration

CNFG17
associated list of distinguishing
attributes:
SYSTEM 4-dimensional

L300..-N.TEST. JA TARGET ENVIRONMENT name
space
withinUSE CNFG17

LR50.JN.RUN. A VERSIONNUMBER

LR50.F-30.TEST.2B 4- name

system target use version
id id number

Figure 4-5
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NONDISTINGUISHING OBJECT ATTRIBUTES

Every object must have some (at least one) distinguishing
attribute; every object, may also have any number of nondistin-
guishing attributes. Which distinguishing attributes apply to an
object depends on where it resides; the values of these attri-
butes are part of the object's permanent identity. Nondistin-
guishing attributes are assigned to an object by users with
appropriate rights [STONEMAN, 5.A.4 and 5.B.11. Nondistinguish-
ing attributes and their associated values can vary over the
lifetime of the object, from its creation until its deletion.

SYSTEM ATTRIBUTES

Every object also has three system attributes -- attributes
of special, system-wide relevance to KAPSE operations, as fol-
lows:

CATEGORY
ACCESS
HISTORY

The CATEGORY attribute protects the integrity of the object. It
is used to describe those aspects of an object that must not be
changed by any operation. Since there are operations which
change the attribute values of an object as well as its content,
the CATEGORY attribute can be used to guard against impermissible
changes in both respects. Here are some critical examples of
what CATEGORY can be used for[S.O.W., 4.1.2.9.2; STONEMAN, 5.A.6
and 5.B.2].

To guard against:

- Format or layout violations of simple objects;

- Creating an object component with an excluded name;

- Assigning excluded values to nondistinguishing attri-
butes.

The ACCESS attribute indicates which executing programs (and
therefore, indirectly, which users) can perform various opera-
tions on the object.

The HISTORY attribute gives access to the history of an
object [STONEMAN, 4.B.4]. The type of history information main-
tained depends on the nature of the object. For a derived object,
constructed as an output of a program applied to some set of
input objects, the relevant history includes a script of the pro-
gram invocation recording the state of the input objects, and the
parameters provided.
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For a source text object, created and edited by a human
using a text editor, the history includes sufficient information
to reconstruct the content of the object and the purpose for the
editing session. The history does not record the actual keys-
trokes used to effect the editing.

The history for both types of objects are stored in a spe-
cial portion of KAPSE memory which physically extends to off-line
storage [STONEMAN, 4.A.6, 4.A.11, 5.A.5, and 5.A.8].

ACCESS CONTROL -- INTRODUCTION

Ultimately, all access control schemes are directed toward
defining who is allowed to operate in what way on what objects.
Every program execution is, ultimately, an execution on someone's
behalf. What operations the program may perform must depend on
what operations the person in question is allowed to perform.
Such controls must apply to every kind of object: data objects,
executable or executing objects, user context objects, device
objects or windows [S.O.W., 4.1.2.10; STONEMAN, 4.B.6 and 5.A.7].
The operations under KAPSE access control divide into two
classes: KAPSE operations and higher-level operations (as embo-
died in an executable object).

The KAPSE approach to achieving the required control objec-
tives is accomplished with economical and flexible means. It
should be noted that the problem to be solved is intrinsically
complex. A single user s right/obligation to perform a certain
function will, in general translate into many different
permissions/limitations on KAPSE operations, depending on which
object is considered. A reviewer, for instance, must be able to
read the files he reviews and edit the files in which he records
his results (STONEMAN, 4.A.91.

The access possibilities of a given programmer or manager
change from time to time; in general, they are the result of
several management decisions, and high-level synchronization
requirements [STONEMAN, 4.A.9].

The current state of user access capabilities must, further,
be translated into low-level synchronization requirements to
insure low-level database consistency [STONEMAN, 4.A.12].

When a program wishes to operate on an object, the access
controls that are applied depend solely on the access path
implied by the address given. Further, at every step along that
access path, the control to be exercised is subject to modifica-
tion.

The access attribute of an object, combined with the capa-
city associated with windows in the database, determine dynami-
cally the access rights available to an executing program. The
value of the access attribute has the form of a table which lists
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capacities and, associated with each entered capacity, a list of
primitive access rights:

Example:
simple object: SPEC10

attribute: ACCESS:
value:

capacity: EDITOR

primitive access
rights: read,

write,
append,
modify user attributes
read all attributes

capacity: SUPERVISOR

primitive access
rights: read-delete

copy
modify all attributes
read all attributes

Figure 4-6

A single capacity as specified in a window may translate to
many different combinations of access rights, depending on which
object is addressed through the window. This is as it should be.
The editor, in his capacity as "editor", may need to read some
objects, without being able to modify them; to append to other
objects, without being able to modify them; to copy some objects,
but not others, etc. The definition and designation of a capa-
city corresponds semantically to a higher level function, or role
which, to be performed, requires various access rights to vari-us
objects.

Furthermore, since the actual powers which a capacity
confers upon its holder depends on the ACCESS attribute of the
objects affected, those powers may be changed without capacity
revocation. For instance, suppose that the exercise of a capa-
city requires reference to a data table which is, at some point,
discovered to contain a significant error. The actual power to
read the table can be suspended by changing the access attribute
of the table without searching out and revoking the capacities
which require use of the table. In any case, these capacities
may well permit useful work to continue -- at least for those
operations not demanding the table. When the table has been
repaired, its access attribute will be restored to make the table
usable.
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Now we note: Each window names not only a target object, but

also a capacity. I

: PEC10

executing W W executing
program program

target: SPEC10 target: SPEC10
capacity: EDITOR capacity:

SUPERVISOR

copy SPEC10 copy SPEC10
to TEMP to TEMP

The command will fail The command will succeed

Figure 4-7

Most of the capacities which will be in use will be user
defined. There are some few capacities which are system defined.
These are discussed in the KAPSE B-spec.

A window on a composite object may allow the window holder
to select components of the object -- for instance, for deletion
or listing - or to select a name within the object with which to
associate a newly created object. By means of an additional win-
dow part called a partition specification, the window can res-
trict an accessor-s view to only a portion of the name space
within the composite object [S.O.W., 4.1.2.7; STONEMAN, 4.A.7 and
4.B.5].
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composite object representing
a related group of configurations

CNFG17
associated list of distinguishing
attributes:

SYSTEM
name

3DO.'N.TST. 1A TARGETENVIRONMENT space

within
USE CNFG17

LR50.JN.RUN.lA VERSION NUMBER

LR5O.F-30.TEST.2B - name

sstem target use version
id i number

Figure 4-8

Examples of partitions:

(a) SYSTEM => LR50 selects all names
with "LR5OM as first
segment. Semantically
all configurations
of system LR50

(b) USE => TEST selects all tests
TARGET => F-30 configurations for
VERSIONNUMBER -> (2A, 2B, 2C) target F-30 with

version numbers
2A, 2B, or 2C
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The next figure illustrates:

- The effect of the partition specification in a window

- The effect on access rights resulting from an -ccess
path which goes through a composite object.

ACCESS: LIBRARIAN: select
Capacity: LIBRARIAN delete
Partition: AFDvN^~ nam 2 create component

CLEANUP

AFD ACCESS: CLEANUP: copy
n ame

ACCESS: CLEANUP: read-delete

copy

Figure 4-9

Suppose that a program attempts to execute the DELETE opera-
tion on the object with name 1. Suppose also that the access
path implied by the address passes through the window shown in
Figure 4-9. The DELETE operation would succeed because: (a)
name 1 is shown as within the partition specified by the window;
(b) the access attribute of the target of the window permits
LIBRARIAN the primitive access right of component deletion. A
similar attempt to delete the object with name 2 will fail
because of the partition restriction.

Partitions play an important role in a number of KAPSE
operations. For example, an operation called LISTPARTITION
lists the components of a partition by name. (This operation
plays an important role in configuration management.) An attempt
to list a partition as in Figure 4-9 will fail if the window used
does not provide access to that partition.

Now suppose that figure 4-9 were modified by removing the
window partition restriction. In this case, a program attempting
to copy the object with name 2 via the window would succeed
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because the access attribute of the window target allows the
access rights of CLEANUP to LIBRARIAN. Relative to the window
target, "CLEANUP" is called an internal capacity. Thus we see
that in stepping past a composite object in following an access
path, any external capacity rights are either translated into
primitive access rights on that object, or translated into inter-
nal capacities for further translation.

An access path commonly passes through many windows. At
each window, the access attribute of the window grants or denies
the primitive access right Ogo through' (see Figure 4-9 to the
capacity obtained by previous steps of translation. If 'go
through' is granted, then the capacity tested against the access
attribute of the next object encountered is that of the window
just gone through.

HIGH LEVEL ACCESS CONTROL

Suppose it is desired only to operate on an object -- call
it HENRY -- by means of particular programs. HENRY, we shall
suppose, is subject to certain high level consistency require-
ments, not expressible by means of its category attribute.
HENRY's consistency can only be assured if its manipulation by
users is restricted to specific programs. (It is this same prob-
lem which led to the invention of the Ada private type.).

This protection can be attained by creating a composite
object -- call it HENRY' -- of which HENRY is a component. Pro-
gram contexts for each of the special HENRY-manipulating programs
are further components of HENRY'. The general user of HENRY is
given a window on HENRY' which yields the "select component"
right on HENRY', and the "program initiate" right on the program
contexts in HENRY', and no other rights whatever.

Normally, when a user initiates a program using the Command
Processor, a copy of the executable program context is created so
that the same program may be running concurrently on behalf of
more than one user. However, under the circumstances which led
to a construct such as HENRY' above, it would be natural to guard
against multiple concurrent executions of the special programs
which operate on HENRY. To this end the KAPSE provides a special
object type called a private object. The structure of a private
object is exactly as described for HENRY' above. The special
programs in the private object are called its operations. Each
operation of the private object has an access attribute which
determines which capacities may invoke it. Thus, different capa-
cities may lead to different rights in regard to which operations
can be invoked. The key difference between a private object
HENRY' and an ordinary HENRY' as described above is this: When an
operation of a private object is invoked, its program context is
not copied into the user context before it is initiated. This
inhibits the concurrent execution of the private object opera-
tions.
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Access control mechanisms of the KAPSE are, in summary:

- The category attribute - used to assure the maintenance
of relatively low-level consistency requirements of
objects.

- The access attribute in association with windows - used
to control what users can perform what operations on
what objects.

- Partitions in association with windows - used to con-
trol the application of operations to designated
classes of objects, instead of to single objects at a
time.

- Private objects - used to assure the maintenance of
relatively high level consistency requirements of
objects.

In closing, we mention that there is an additional KAPSE
mechanism concerned with synchronization -- and hence access con-
trol -- which we have not discussed above: the RESERVE mechan-
ism. There are also additional refinements for the protection of
attribute value settings. These latter mechanisms the reader
will find described in the B-specification of the KAPSE.

PARTITIONS, COMPOSITE OBJECTS, AND MANAGEMENT

The structure of the KAPSE database lends itself naturally
to a variety of project management and configuration control
tasks, as illustrated in the following example. Imagine that the
operational software for the F99 aircraft consists of four major
packages:

EXEC - The real time operating system

NAV - The guidance and sensor management software

UI - The user interface: displays and controls

WEAPONS - The tracking, fire-control and defensive sys-
tems.

Within the software development facility, there are four "labor
pools" or functional organizations: QA, Programming, Analysis,
and Documentation.

Furthermore, four versions of the aircraft are to be built:
versions for the Army, Navy, Air Force, and one for export. This

4-16

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE a CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661.1840



arrangement may be summarized as:

Module: Exec, Nav, UI, Weapons

Department: QA, Prog, Analysis, Doc

Version: Army, Navy, AF, Export

These management dimensions correspond to the three dimen-
sions of a composite database object created to contain the pro-
ject data. The components have distinguishing attributes MODULE,
DEPARTMENT and VERSION, with the possible values as listed above.

Using this arrangement, the project manager can create
appropriate management visibility and control. The following
actions would be typical.

Give the manager of each department an owner window on a two
dimensional slice of the composite object. For example, the QA
manager would be able to see all components within the partition
"*.QA.*U. His view of the database (through the window) is a 4X4
matrix of the Army, Navy, Air Force, and Export revisions of the
Exec, Nay, UI, and Weapons modules. He can refer to objects by
names such as "Exec.Navy", "Nav.Army", and "Weapons.AF". Each of
these objects may be composite, containing, for example, simple
objects TESTPLAN, LATESTSOURCE, BASELINECODE, STATUSTEXT.

The QA manager may create windows of lesser capacity. He
might, for instance, appoint a coordinator for the testing of
each of the four systems (Army, AF, etc.). He would define a
COORDINATOR capacity for these windows, which would include write
access to the LATEST SOURCE and BASELINE CODE objects. Only the
QA manager and his designated coordinators (managers with access
to the coordinator windows) could accept a new release into the
QA baseline. The QA manager would create another capacity, TES-
TER, and give the coordinators one dimensional windows of this
capacity on, e.g., *.QA.NAVY,*.QA.AF. The Air Force QA coordina-
tor would subdivide his tester window, giving a portion to each
subordinate. He has considerable flexibility in this. He could
give each tester the whole partition, h*.QA.AF", or could give
one tester "NAV.QA.AF", one "EXEC.QA.AF", etc., or some combina-
tion with any desired overlap. The tester capacity, in any case,
would have rights to execute BASELINE CODE, to read TESTPLAN and
LATESTSOURCE, and to both read and write STATUSTEXT.

This example illustrates one primary aspect of the database
design. Rather than imposing a uniform *solution" to the
software management problem, the design lets managers manage.

In the example, the F99 software project manager has made a
number of global management stragegy decisions.
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- He has adopted a three-dimensional view of the project
database. (The dimensions are department, module, and
system.) This indicates that his management approach
will require answering questions like "what is the QA
status of the Air Force Navigation Version?" or "what
modules of what systems are receiving the most atten-
tion from the programming department?"

- He has delegated the setting of QA procedures to the QA
manager.

- He has created non-overlapping partitions for the QA,
Programming, Documentation, and Analysis departments.
This means that files must be explicitly moved
(released) from one department to another, rather than
being shared. For example, the programming department
may have any number of simple objects within the
NAV.PROG.AF component of the F99 composite object.
These simple objects may contain several executable
versions, in various states of debugging. None of
these versions (revisions) are visible directly to the
QA, Documentation, or Analysis groups. These groups
may only test, document or analyze the revisions which
have been specifically released by the programming
department.

At the next level, considerable flexibility has been left to
the individual department managers. The QA manager's options
have been discussed above, at least by presenting a plausible
scenario. In fact, he has the same degree of flexibility as the
other three department managers. Decisions to be made at this
level include:

- Whether to give access to the department's entire par-
tition to all members of the department, or to subdi-
vide the visibility.

- How to structure the object at each point within the
department's partition. Within each object in
"NAV.PROG.*", the programming department manager could
create simple objects, "working", "tested", "integra-
tion", and "baseline" representing the various develop-
ment states of each module.

- What capacity to use for the window assigned to each
programmer. The programming manager might give
developer windows with rights to the "working" and
"tested" release levels to some programmers, and
integrator windows with access to the "tested" and
"integration" release levels to other programmers. He
himself might retain the only rights to the "baseline"
level, or might create coordinators for the Army, Navy,
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Air Force, and Export systems with rights to the base-
line release levels within those particular areas.

Depending on the size and complexity of the F99 system, and
the number of people involved, managers at lower levels may have
further decisions to make about sizes and capacities of windows
for their subordinates, about the contents of components (the
"baseline" object within the composite object "NAV.PROG.AF" might
be a further composite object if the project is large enough),
and about the access rights (such as read, write, execute) to be
associated with specific capacities (such as tester, developer,
and integrator) within his portion of the database.

The private object concept discussed earlier in this chapter
allows the very easy development of tools for moving data between
partitions, such as from "baseline" within NAV.PROG.AF to "base-
line" within NAV.QA.AF. This "tool" would consist of the MCL
copy" command invoked by an appropriate guardian of the private

object NAV.QA.AF.baseline.

The combination of windows, capacities, and rights with the
"delegation" approach described in this section, and the
special-case controls available through private objects, enable
implementation of configuration control and management policies
with no more "programming" than the writing of a few MCL com-
mands. The approach is fully compatible with a spectrum of con-
figuration control/managemenmt policies ranging from "just turn
the programmer loose" to "access only by need-to-know" to "7-
level incremental development and release strategy", or any com-
bination of approaches at various points within the project
organization.

KAPSE OPERATIONS

This section lists, with some discussion, the operations
which, together with a number of type specifications, constitute
the programmer's interface to the KAPSE.

It has already been mentioned that when KAPSE operations are
performed on a user's behalf, it is some program which actually
executes the request that the operation be performed. These
requests for KAPSE operations appear in the requesting program as
normal Ada procedure or function calls; with such a call, control
passes to the KAPSE packages linked into the user's running pro-
gram. Any Monitor service calls which need to be made in order
to carry out the requested operations are then done by the KAPSE-
package programming. Thus, the KAPSE provides an 'Ada Virtual
Machine' interface to whatever hardware actually underlies the
MAPSE.

The user's interest in the KAPSE operations lies in the fact
that the Command Processor (Chapter 6) will be executing many of
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them on his behalf, either directly, or by calling tools which
will execute more intricate sequences of KAPSE operations to per-
form common functions. However, this list of operations is of
most interest to the programmer, since they amount to the
"operating system calls" of the Ada Virtual Machine for which he
will be writing programs.

These operations are fully specified in the KAPSE B5 docu-
ment, and hence we shall not repeat here the details of parameter
types, required access rights, or failure conditions.

Operations Applying to All Objects

COPY (object, name)
DELETE (object)
RENAME (object, newname)

These three operations are likely to be called directly from
the command processor, as well as from other Ada programs. At
the time the COPY operation is performed, no additional storage
is actually allocated, and no actual copying of bits is per-
formed. Instead, "logical" copying is done: the newly-created
newname' object contains a reference to the original 'object',

and the reference-count at 'object' is incremented. Whenever any
information in the object is actually changed -- via reference
through whichever name -- just enough disk-blocks are physically
copied (and references adjusted in the appropriate data-base
objects) to maintain consistency of both "copies" of the object.

SET ATTRIBUTE (object, attributelabel, attributevalue)
GET ATTRIBUTE (object, attribute-label) --> attribute value
SETALL ATTRIBUTES (object, attribute values)
GET ALL ATTRIBUTES (object) --> attribute values
PROTECtATTRIBUTE (object, attributelabel, yesorno)

SET CATEGORYELEMENT (object, categelt, categ_elt value)
GET CATEGORY ELEMENT (object, categelt) --> categeltvalue
SET-CATEGORY-(object, text file)
GET CATEGORY (object, text-file)
SET CAPACITY ACCESS (object, capacity, accessrts)
GET-CAPACITY-ACCESS(object, capacity) --> accessrts
GET-CAPACITIES (object) --> capacities

TRANSFERBUDGETS (fromobj, toobj, diskamt, procamt)

These operations are the nuts and bolts with which the
administrators and other users of the system put together the
pattern of access rights desired for a particular project. In
that use, the operations would normally be invoked by tools -- or
Command Language scripts -- devised to assist the user in his
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Operations on Simple Objects

The following operations are applicable only to simple
objects. A simple device object represents a host-machine physi-
cal device within the data base, so that the access control
mechanisms can apply to attempted uses of the device.

CREATE (file handle, object, filemode)
CREATE DEVICE OBJ (object, device name, root-window)
OPEN (file handle, object, file_mode)
CLOSE (file handle)
SET FILE INFO (filehandle, file info block)
GET-FILE-INFO (filehandle, file-infoblock)
READ (file handle, addr, size, numrec, max_rec)
WRITE (filehandle, addr, size, numrec)

In CREATE and OPEN, *object* is the permanent name of the
file object, while 'file handle' is an Ada object which
represents the file while it is open, and loses its meaning after
the file is closed. CREATE also implicitly opens the new file.

Operations on Window Objects

The usage and properties of windows have been discussed
extensively in the earlier part of this chapter. There are two
operations concerned with the existence of a particular window:

CREATEWINDOW (object, target, ancestor, partition, capacity)
REVOKE (superwindow, sub_window)

And there are three operations, concerned with synchronizing
access to regions of the data base, which require window names as
arguments:

RESERVE (window, reservemode, timelimit)
RELEASE (window)
ABORTRESERVE (window)

Operations on Composite Objects

The following operations (except CREATE COMPOSITE) apply to
all composite objects. Program-control objects and Private
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objects have additional specialized operations, including their
own CREATEoperations.

CREATECOMPOSITE (object, attriblabels)
OPEN PARTITION (partition handle, partition)
CLOSE PARTITION (partitioi handle)
GET_PARTITION INFO (partitTonhandle, partition infoblock)
GET NEXT COMPONENT (partition handle) --> component
LISTPARTITION (partition, attributes)

In analogy to files, the composite object named in the *par-
tition' designator for OPEN PARTITION is the permanent name of
the composite object; the 'partitionhandle' is a token for the
(sub)set of components of that object to which access is
requested. When the partition has been OPENed,
GET PARTITION INFO provides the information necessary to step
through the components in the partition with GETNEXTCOMPONENT.

Note that the creation of an entire composite object is a
rather more involved procedure than just calling
CREATE COMPOSITE: each component of the newly-created object must
itself-be created, with the appropriate CREATE-operation; and the
component must be designated so that its name-string shows it to
be an immediate descendant of this composite, with distinguishing
attributes matching those given in the CREATECOMPOSITE call.

LIST PARTITION will in fact be a rather subtle tool -- it is
the analogue of "DIRECTORY" commands in other operating systems
-- displaying, in sorted order, all components in a designated
partition which meet certain selection criteria.

Operations on Program-Context Objects

Except for the CREATE operation below, these operations all
deal with the activation of programs -- that is, they are run-
time operation primitives, not data-base-structure modifying
primitives.

CREATE PROGRAM CONTEXT (object, purepart, impure_part)
PROGRAM SEARCH-(progname) --> prog_path
CALL PROGRAM (prog_path, params, context) --> outparams
INITIATE PROGRAM (progpath, params, context,stdin,std out)
AWAIT PROGRAM (context, time_limit) --> outparams
SUSPEND PROGRAM (context)
RESTART-PROGRAM (context)
PICKPARAM (params, param-name, position, default) --> value
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CALL PROGRAM puts the designated program into operation then
waits for it to terminate; INITIATE PROGRAM puts the designated
program into operation concurrently with the calling program.
The context' argument to the operations is a local name for the
particular instance of the invoked program, required only if sub-
sequent operations will need to refer to it.

As with any composite object, the creation of a program con-
text is an intricate process, but is usually done by the Linker
tool -- in fact, the creation of a program context object is the
operational output of the Linker.

IPCACCEPT (channr, timelimit) --> callblock
IPC END RENDEZVOUS (callblock)
IPCENTRY CALL (context, channr, timelimit, callblock)

The above three operations allow concurrent programs to com-
municate with one another in a manner directly modeled on the
tasking features of Ada; within an Ada program the tasks must
agree on the format and meaning of the callblock, and on the
channel numbers they will use.

Operations on Private Objects

Private objects are composite objects with particular attri-
bute values, and the CREATEPRIVOBJ and ADDOPERATION operations
are simply procedures using the more elementary operations (see
KAPSE B5 document); they are called out here as separate opera-
tions for completeness, and convenience to the programmer.

CREATE PRIV OBJ (object)
ADDOPERATION (obj, opname, params, timelim) -- > outparams

User Service Operations

LOGIN (username, userpassword)
LOGOUT
CHANGE PASSWORD (password)
CHANGE-VIEW (partition)
CURRENTUSERNAME() --> user-name
SEND_MAIL (user_name, subject, message, mail seq num)
SENDMAIL CHECK (mail seq num) -- > yesorno
CHECK MAIL() -- > nr newmess
READ MAIL (object)
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wlWhen a user attaches his terminal to the MAPSE -- by means
appropriate to the hardware system he is using -- he is prompted
for his name and password, and a function represent- here by the
LOGIN *operation" is performed. When this operatio. succeeds, he
will be in contact with the MAPSE Command Processor as the ini-
tial program executing on his behalf. The program-context object
for the Command Processor will have accessible all the windows
which define the rights of the user with respect to the objects
in the data base.

While the user is working in a particular small area of data
base name-space, he may call CHANGE VIEW to temporarily restrict
his "view" of the data base, to permit the use of shorter names,
or to change the data-base environment of a program to be exe-
cuted.

The other operations in this group provide a simple inter-

user mail facility.

Packages

The remaining operations provided by the KAPSE can be
grouped easily into functional packages, according to the Ada
feature, or MAPSE tool, that they support. The names are mostly
self-explanatory, and detailed descriptions are given in the
KAPSE B5 document. These operations are simply listed here to
provide a survey for the reader.

Debugging

SET CURRENT DEBUGGEDCONTEXT
GETPROGRAMSTATE
CONTINUE
SET PROGRAM DATA
GETPROGRAM DATA
SET ECP BREAKPOINT
SET EXCEPTION BREAKPOINT
SET_TRAPS

Tasking

SET DELAY
SIMPLE ACCEPT
ENTRY CALL
SET OPEN
READY TO TERMINATE
SELECT CALLER
ABORT YASK
TERMINATE
CREATE TASK
INITIATE TASKS
RAISEFAILURE
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Storage Management

GET-STORAGE
FREESTORAGE

Text I/O

SET ECHO
No ECHO
SETLINELENGTH
SET -COL
GET LINE
SET OUTPUTINFO
GETOPUTPUT INFO
SET INPUT INFO
GET -INPUT INFO

Formatted I/O

CONV F14T
FWRITE
FPUT
FEND
FREAD
FGET

Terminal I/O

READ-TERMINAL
WRITE TERMINAL
SET TERMINAL INFO
GETr TERMINAk..INFO

KAPSE-Host Interface

ALLOCATE-BLOCK
INC REMENT..BLOCK..YEF
DECREM4ENTBLOCK-REF
READ BLOCK
WRITEBLOCK

Backup Recovery

FULL-BACKUP
INCREMENTALBACKUP
RECOVERY

History

r GET HISTORY REP
RECREATE
NEW SOURCE...ARCHIVE
OLD SOURCk..ARCHIVE
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NUNREFS
GET DERIVATIVES
SETREFERENCELISTING
CHECK REFERENCE LISTING
GET DIRECT CONSTITUENTS
GET7SOURCE CONSTITUENTS
GET HISTOR!Y PARAMETERS
H IS TORY ACTIVATE
HISTORY ON LINE
HISTOY" TIME
H ISTORY -MAKER
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Chapter 5

PROGRAM COMPOSITION

Traditional programming systems have considered program
composition to consist of two parts, the translation of source
text into object modules by a compiler, and the linking of
multiple object modules into an executable program. Ada has been
designed with separate compilation features as an integral part
of the language: packages may be separately compiled and made
visible by means of with clauses; alternatively, procedures may
be compiled separately-and used by means of a body stub. In both
cases, Ada requires language-defined consistency checking between
separately compiled pieces. This requires that much of the
integration work traditionally performed at link-time must, in
the case of Ada, be performed at compile-time.

The design of the program library must satisfy the implied
requirements set forth in the Language Reference Manual, must
provide facilities for versions and revisions not directly
supported in Ada, must serve as a communications vehicle between
compiler and linker, and must be integrated in and utilize the
KAPSE database system. Indeed, one major requirement on the
database is that it in fact be an appropriate host for Ada
program libraries.

Fundamental to the design of the program composition
facility is the concept that the compiler, rather than the
linker, integrates compilation units into the library. This
approach satisfies the language-mandated requirements and also
simplifies the design of related tools.

THE PROGRAM LIBRARY

The Program Library is implemented as a well-managed
collection of database objects, whose contents are accessed via
the Diana representation for Ada programs and the Virtual Memory
Methodology system. A Program Library consists of all of the
pieces of a set of related programs which are in various stages
of development. The design maintains these compilation units in
a well-defined state no matter how complex their
interrelationships, or how drastically they change. Since the
MAPSE supports multiple Program Libraries, parallel development
of unrelated Ada programs may proceed without conflict or
unwanted interaction.
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Program Library Issues

The correct design and implementation of the Ada program
library is a major key to achieving the goals of the MAPSE. Of
particular importance are choices made in the representation of
Ada programs and especially in the implementation of that
representation in the light of separate compilation. These
choices have a profound impact on the design of the MAPSE and its
extension to an APSE. Those choices influence not only the
internal design of APSE tools, but also shape the user's view of
the system.

To satisfy MAPSE requirements, a program library must
support

- efficient forms of representation of an Ada program
during the process of compilation,

- permanent retention of and access to those forms which
are needed by other tools, specifically the compiler
when referencing separately compiled units or when
recompiling a unit automatically, the Linker, the
debugger, and yet to be conceived APSE tools, and

- addition (to those permanent forms) of as yet
unspecified information produced by unspecified APSE
tools.

Most importantly, separate compilation should introduce as
few complications and as little overhead as possible to the
fulfillment of these requirements.

A local view of the program library might, for example, be
one in which the compiler produces a representation of each
compilation unit that is completely self-contained. This would
require the copying of information from the representation of
other compilation units. An obvious drawback here is the space
overhead for many copies of the representation of an imported
type or specification, one in each referencing unit. With
certain styles of programming-in-the-large, the space and time
overhead of copying can be severe.

More serious is the impact this view has on the design of
the MAPSE tools and the integrity of the program library. A tool
which must look at the representation of more than one unit has
to integrate the separate self-contained worlds. It must keep
what has been defined by each unit, throw out what has been
copied, and insure that the multiple copies are self-consistent.
A simple example is the context specification WITH B,C where both
B and C contain WITH A. Since B and C both contain copies of A
the two versions of A must be sorted out. They might be
different, in which case a choice must be made. This integration
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must be performed each tine a representation of a set of units is
accessed. The integration exists only during program execution.

A global view, on the other hand, would be one in which all
of the units are integrated together. The compiler produces a
representation of a unit which is already integrated with the
other units. Instead of copying information from a previous
compilation, the information is directly referenced (pointed at).
In a completely global view all traces of the original separation
disappear after a unit is compiled, making it impossible to
maintain multiple revisions or versions of a compilation unit.
To fulfill APSE requirements, the global view must be adjusted to
provade this capability.

The MAPSE program library is a logically integrated yet
physically distributed world. Each compilation unit is
represented separately in its own space (file), yet is integrated
with the other units. This approach avoids the problems of both
the local and the non-distributed global views. It avoids the
overhead, complexity, and cost associated with copying. At the
same time, it allows multiple versions of units to coexist in the
same program library. The separateness of compilation units
remains highly visible.

Program Library Architecture

A Program Library is a data base composite object, for
example named MYLIB, with four components names as follows:

MY LIB.COMPILATION
MY LIB.UNIT
MY-LIB.LINK
MYLIB.LIBRARY

MY LIB.COMPILATION contains a numbered component -for each
submission of text to the compiler, each perhaps containing
multiple compilation units. Each such component has an attribute
which preserves the options specified to the compiler; its
content is the resulting abstract syntax tree with lexical
attributes, a record of lexical and syntactic errors, and a
representation of the source text for listing purposes.

MY LIB.UNIT contains, for each compilation unit, a pair of
components named MY LIB.UNIT.DIANA.n and MY LIB.UNIT.LIST.n,
where "n" is a Virtual Memory Sub Domain (VMSD) number. The use
of the VMSD number supports multiple revisions of the same
compilation unit and is described in detail in the B-
specification. Each component has attributes which identify, for
example, the name of the unit, whether it is a specification or
body, whether it is a package, procedure, function, or task, its
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version name, its usage as regards recompilation, and its error
status. The DIANA component contains the Diana representation of
the compilation unit, integrating such traditional compiler
outputs as object module, program tree, symbol table, and
debugger table. The LIST component contains a printable listing
for the compilation unit.

MY LIB.LINK contains a version-named component for each
executable program produced by the linker from compilation units
in the library. One attribute s value is the name of the entry
point while the second attribute's value identifies the program
context composite object which contains the initial memory images
as built by the linker, the memory map, and appropriate windows
for execution.

MYLIB.LIBRARY has attributes whose values are used for
various program library housekeeping functions.

Figure 5-1 illustrates, in the style of Chapter 4, a Program
Library as generated fresh for a user. Observe that it already
contains compilations and compilation units corresponding to
package STANDARD, the other Language Reference Manual defined
package, the user-visible KAPSE packages, and the user-invisible
run-time library package.
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PROGRAM COMPOSITION TOOLS

The major program composition tools are the compiler and the
linker, although there are also a variety of support tools.
These include:

- RECOMPILE - a program which allows additional control
over recompilation.

- BODYGEN - a program which produces dummy bodies for
those bodies which have not yet been written.

- PREAMBLE - a program which produces a preamble to
enable an Ada program to be called by the Command
Processor.

- CHANGE - a program which compares two Diana trees in
order to determine whether recompilation is necessary.

- MAP - a program which stops the "domino effect" of unit
recompilation.

- OBJECTMODULECONVERT - a program which incorporates a
"foreign" object module into the Program Library and
allows it to be accessed via pragma INTERFACE.

- MAKE LIBRARY - a program which creates a new Program
Library.

- EXTRACT - a program which produces a text
representation from the Program Library.

These support tools are described in more detail in the B-
specification.

The major issues which the program composition tools must
address are those of minimizing the recompilation and supporting
multiple versions and revisions.

Recompilation Minimization

The source processed by the compiler may redefine a
compilation unit which had been previously compiled and then
referenced by another compilation unit, for example via the WITH
statement. The redefinition implies that all referencing units
must be recompiled to be affected by the change. Until the
affected units are recompiled, there exists an inconsistency in
the program library.

A program library can be well-defined and yet be
inconsistent, as long as the inconsistency is properly
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represented. For example, a specification might be changed
without recompiling units which depend on the original. The
units requiring recompilation are inconsistent until they are
recompiled using the changed specification. The term "unit
recompilation" refers to recompilation of a defined unit (usually
to make it consistent) by effectively using the same source text
as was submitted in a source compilation, but without requiring
the user to actually resubmit a source text file. The abstract
syntax tree, stored as a component of MY LIB.COMPILATION, is used
in recompilation; recompilation therelore bypasses the lexical
and syntactic analysis performed by LEXSYN.

A single unit will undergo unit recompilation separately
even though it was submitted together with other units in a
source compilation. Unit recompilation will occur automatically
according to the following two principles:

1) (Ease of use): The user never has to remember what or
when to recompile. The system will always recompile
whatever

2) (Efficiency): Automatic unit recompilation is delayed
until USE of an inconsistent unit would otherwise
result.

Both the compiler and the linker will perform automatic unit
recompilation according to the above principles. These
principles avoid wasted recompilations and allow the user to
interact in various ways with the program library prior to the
"domino effect". The domino effect refers to the widespread
recompilations made necessary by a change to a low-level
specification. The change must be propagated by recompiling all
affected units (those which reference the specification), and
then those which reference the recompiled units, and so on. By
the second principle the unit recompilations do not occur when
the low level specification is changed. Instead, they occur when
the referencing unit is used as a referenced unit itself or by
the linker.

An obvious example of the savings in recompilations occurs
when the user is about to submit a different source version of an
affected unit; prior unit recompilation would be a waste of time.
A less obvious interaction with an even greater savings is the
use of the MAP program. This program allows the user to assert
that two versions or revisions of a compiled unit are identical.
The program checks the assertion and if true, maps the old to the
new. The mapping allows units compiled using the old version to
be consistent with the new without recompilation, thus stopping
the domino effect. The VMM system supports this mapping by
translating automatically all of the old VM pointers to new VM
pointers.
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Versions and Revisions

The Ada language does not support the concept of versions
for different purposes, or revisions in time order, of the same
compilation unit. Such concepts clearly must be supported by the
database; we have chosen to support them directly within the
Program Library.

Each compilation unit has a VERSION attribute which serves
to name the particular version. This attribute is set when the
unit is compiled. In addition, the USE VERSIONS option may be
used to instruct the compiler as to which version of a particular
unit should be used. If no version is specified, the unit with a
null VERSION value is selected, implementing the concept of a
"default version".

The concept of revision is implemented by means of the
COMPILATION and RECOMPILATION attributes. The "most recent"
revision is defined by the highest value of the COMPILATION
attribute. If unit recompilation has occurred, multiple
revisions may exist with the same COMPILATION value; in this case
the one with the higher RECOMPILATION number is chosen. Only the
most recent revision will have a USAGE attribute with a value
other than OUTOFDATE.

EXAMPLE

Figure 5-1 illustrated the structure of the newly created
Program Library MY LIB. We shall now illustrate the results of
compiling and linking two different versions of the same program.

Figure 5-2 is a single compilation unit, the example found
in Section 10.1.2 of the Language Reference Manual. Let us
assume it is stored in the database object named
PROCESSORPROGRAM. The Command Language sequence

COMPILE SOURCE => PROCESSORPROGRAM,
LIB => MYLIB

LINK LIB => MY LIB,
MAIN => PROCESSOR,
CALL -> PROCESSORVl

will result in additions to MYLIB illustrated in Figure 5-3:

- A C+l'st component of MY LIB.COMPILATION containing the
abstract syntax tree and-related information,

- Components DIANA.V+l and LIST.V+l of MY-LIB.UNIT, with
attributes as shown,
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- A component MY LIB.LINK.PROCESSOR_Vi, which can now be
directly executed.

-- in database object PROCESSORPROGRAM is

procedure PROCESSOR is

package D is
LIMIT : constant : 1000;
TABLE : array(l .. LIMIT) of INTEGER;
procedure RESTART;

end D;

package body D is
procedure RESTART is
begin

for N in 1 .. LIMIT loop
TABLE(N) : N;

end loop;
end;

begin
RESTART;

end D;

procedure Q(X : INTEGER) is
use D;

begin

TABLE(X) - TABLE(X) + 1;

end Q;

begin

D.RESTART; -- rinitializes TABLE

end PROCESSOR;

Figure 5-2
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in ataaseobject Dis

package D is
LIMIT : constant := 1000;
TABLE : array (1..LIMIT) of INTEGER;
procedure RESTART;

end D;

-- in database object DBODY is

package body D is
procedure RESTART is
begin

for N in I .. LIMIT loop
TABLE(N) : N;

end loop;
end;

begin
RESTART;

end D;

-- in database object PROCESSORPROCEDURE is

with D;
procedure PROCESSOR is
procedure 0 (X:INTEGER) is separate;

begin

D.RESTART; -- reinitializes TABLE

end PROCESSOR;

in database object Q is

separate (PROCESSOR)
procedure Q(X:INTEGER) is

use D;
begin

TABLE(X) := TABLE(X) +1;

end Q;

Figure 5-4
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Figure 5-4 is a version of the same program, broken into
four compilation units. If we compile and link them according to
the scenario in Figure 5-5, the revised Program Library will be
as in Figure 5-6. Note that the long form of the Command
Language is used for ease of exposition; the short form is much
more compact.

COMPILE SOURCE => D,
LIB => MYLIB

COMPILE SOURCE => D BODY,
LIB => MYLIB

COMPILE SOURCE => PROCESSORPROCEDURE,
LIE => MYLIB,
VERSION -> SEPARATE

COMPILE SOURCE => Q,
LIB => MYLIB,
USEVERSION => SEPARATE

LINK LIB => KY_LIB,
MAIN => PROCESSOR,
CALL => PROCESSOR V2,
USE VERSION => SEPARATE

Figure 5-5
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Chapter 6

COMMAND PROCESSING

The S.O.W. both recognizes the extreme importance of a
well-engineered user interface and, at the same time, does not
constrain the MAPSE designer to a particular style of interface:

"...In general, the user will access the system to
either invoke a MAPSE tool or to use KAPSE facili-
ties to execute an Ada program (run a job) ... In
the case where use of a tool is desired, the KAPSE
must provide uniform facilities to "connect" the
user to the appropriate tool. In the case of job
execution, the KAPSE must provide standard inter-
faces to run-time support and host facilities
required to perform that function...

[S.O.W., 3.2.8]

In order to execute jobs (user and tool), the
KAPSE must provide job control facilities. This
includes interfaces to required host facilities, a
standard job control language, and functions to
interpret and execute job commands..."

[S.O.W., 3.2.8.2]

While recognizing the importance of "uniform facilities" and
"standard...language" the S.O.W. requires neither a particular
type of command language nor a particular implementation technol-
ogy. The burden of designing an appropriate command language
which is both natural to use and robust, and an implementation
which provides both uniformity and flexibility, falls squarely on
the MAPSE designers.

Our design of a MAPSE Command Language (MCL) and Command
Processor (CP) is based on a number of assumptions:

- Most, but not all, users of the MAPSE and its exten-
sions will use MCL. Some potential users, however,
will require their own specialized command languages.
It follows that the use of the CP by a user must not be
built into the KAPSE, and assignment of a command pro-
cessor must be settable at user and/or role definition
time.
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- The CP is a conventional MAPSE tool, coded in reho-
stable Ada. It follows that all facilities needed to
implement the CP, including KAPSE and inter-program
invocation and communication facilities, must be avail-
able to any Ada program.

- Although consistency requirements might argue in favor
of Ada as a command language, Ada as it stands is not
appropriate. However, where appropriate, MCL should be
"Ada-like", and all facilities must be accessible both
from the CL and from arbitrary Ada programs.

- Although the CP, Editor, Debugger, and future interac-
tive tools have differing requirements, the overlap of
requirements is considerable. All interactive tools
need the ability, potentially, to be controlled by ter-
minals or database objects, to update local environ-
ments, to process filed "scripts" of commands, etc. It
follows that the design of the CP must be modular in
order to provide the basis for future interactive
tools.

MAPSE COMMAND LANGUAGE

Since the Command Language is the most visible interface a
user has to the MAPSE, its design is critical. The MAPSE Command
Language (MCL) must be intuitive and simple to use for conceptu-
ally straightforward applications and for casual users. At the
same time it must be rich enough to support the most sophisti-
cated user performing complex operations. This section discusses
Command Language design issues, the elementary MCL features, and
the advanced MCL facilities. Several examples are provided.

Command Language Issues

Users of newer programming and operating systems have come
to expect an interactive command environment containing the
facilities of a complete programming language, including features
such as:

- Simple program execution and control

- Multiple concatenated program execution

- Execution control statements (if-then-else, loop)

- Command procedures and functions

- Command level variables

- Uniform access to tools and facilities

The MCL is an example of such an interactive command environment.
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At the same time a casual MAPSE user must be able to perform pro-
ductive work without the need of an MCL "refresher course". MCL
has this property: a user may issue commands for service,
including HELP, and receive immediate response. In addition,
since MCL is a complete programming language, a user may compose
arbitrarily complex command programs, for either foreground or
background execution.

Command Language Style

There are three competing orientations for the design of a
MAPSE Command Language:

- Ada-style

- English-style

- Functional-style

An Ada-style command language would utilize Ada, or a subset
of Ada, directly. There are obvious advantages to this approach.
Since Ada was designed for safety and readability, typical
(though not all) MAPSE users will already be Ada programmers, and
the command language processor would be able to share many tool
components with the compiler. Ada, however, was designed for
embedded computer systems, and its static syntax structure is not
well-suited to the dynamic requirements of an interactive command
system. Although an English-style command language with a flat,
keyword syntax is tolerable for the occasional user, it is wordy
and cumbersome for those who use the system on a day-to-day
basis. A functional-style command language is typical in current
interactive operating systems. Such a language allows the
sophisticated user to take full advantage of a system's capabili-
ties. It often, however, is difficult for a non-programmer to
use, and, in any case, requires the user to learn a new language.

MCL represents a comfortable compromise among these three
styles. Full Ada is not appropriate for a command language, but
those portions of Ada that are appropriate have been used. This
property allows carefully written sequences of MCL statements to
be directly converted into Ada code. In the opposite direction,
all system facilities may be invoked from within Ada code. Since
MCL allows execution of an arbitrary Ada program, command
sequences may be written in Ada, compiled, and executed from the
terminal. In this particular case, Ada itself is available as a
command language.

Use of a natural program invocation syntax, and the
representation of all system facilities as programs, allows a
near English-like simple command interface. For example, to com-
pile an Ada procedure named TEST, one can type

COMPILE TEST MYLIB
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More sophisticated operations can be performed through the
use of functional-type notation. For example, to compile TEST in
the background, piping the compiler messages to a program
COMPSTAT, a filter which accumulates compiler statistics in a
data base object, and then to a line printer queue called LPT, a
sophisticated user might type

COMPILE TEST MYLIB -1 COMPSTAT -> LPT -&

If this type of command were used often, the user might write a
script, or an Ada program to carry out the function. If the pro-
gram were named COMPILE, with two parameters named SOURCE and
LIB, then

COMPILE SOURCE=>TEST LIB>MYLIB

or, more simply

COMPILE TEST MYLIB

would carry out the new, user-specified, compile function.
Observe that the new compilation user program effectively
replaces the old predefined compilation tool for this user.

Command Language Requirements

Command languages deal primarily with names of programs,
command options, and database objects; only more advanced users
make explicit use of variables and control structures. This
observation implies that program, command option, and database
object names must be easy to write and manipulate in MCL.

Names of programs and database objects should not be bound
to particular program and object instances until the time of
actual use. Representation of names as strings meets this
requirement; quotation of strings, however, results in an awkward
command language. MCL allows strings which have the lexical form
of a name to appear without quotes. The association of the name
with a particular program or object does not occur until the name
is interpreted by the CP. Thus, for example, the name of a pro-
gram, being a string, may be passed as an argument to another
program.

Command options behave much like enumeration literals.
Unlike the literals of an enumeration type, however, the set of
command options must be capable of extension. The treatment of
command options as names, in the above sense, solves this prob-
lem.

Unfortunately, introducing such a simple quotation conven-
tion raises an ambiguity with command language variables. The
set of names used for database objects ought t be disjoint from
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the set of variable names. Since command variables are used
infrequently, compared to database object names and program
options, command variables must bear the syntactic burden of
unique identification; a command variable name is an identifier
prefixed with "%'.

The fundamental purpose of MCL is to facilitate the invoca-
tion of programs. The command set has been chosen using a subset
of Ada where relevant as well as several non-Ada notations.

Many features of Ada are appropriate for use in the command
language. These are listed in Figure 7-2.

statements examples

assignment %I := %I+i;
if if %I<%J then%K := %K+%J;

end if;
loop for %I in %J..%K loop

%S := %S+%I;
end loop;

return return;
call COMPILE (SOURCE=>TEST);

elements

types INTEGER, BOOLEAN, STRING,
REAL

expression (%I = 12) and (%J >= %K)
quoted string "ABCDE"
decimal number 12.23
integer 723
identifier ABC
attribute

reference TEST'CATEGORY
function call F(2,3)
parameter mode IN OUT
dot notation .CURRENTDATA.TEST

FIGURE 7-2: Ada Features Used in Command Language

Although usable as described, many of the Ada fedtures are
relaxed for ease of interactive use. For example, a statement
may be terminated by end-of-line rather than ";", the parameters
in a call need not be surrounded by parentheses, and the
currently visible database object .CURRENT DATA.TEST may be sim-
ply accessed as TEST. In examples, the Ada-like syntax is used
in scripts and other retained command sequences, the relaxed syn-
tax is used for user-entered commands; there are no semantic
differences between equivalent syntactic forms.
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Other Ada facilities such as generics, full Ada typing, full
tasking, and separate compilation are not relevant for a command
language. On the other hand, a command language should have
built-in facilities for such activities as input/output redirec-
tion and background execution, available as commands, and with
appropriate operator-like syntax.

ELEMENTARY COMMAND LANGUAGE FACILITIES

When a user logs in, is identified to the MAPSE, and assumes
a particular role, a role-specific program is executed. Typi-
cally, this will be an instance of the Command Processor invoked
with a role-specific window into the database and a role-specific
set of capacities, identifying, among other things, programs
which may be executed.

Program Invocation

At this point a user might, by typing

HELP

inquire about the programs currently available. For more
detailed information concerning a particular program, a user
might type, for example

HELP COMPILE

The user has invoked, via MCL, a particular program named "HELP".

HELP may also be obtained for a particular parameter of a
program. This help may be requested in the course of parameter
specification. For example:

COMPILE MYFILE ?

would cause the CP to print help information on the second param-
eter of COMPILE, then allow the user to specify a value for that
parameter.

More generally, all programs are invoked via the same uni-
form access mechanism, regardless of whether they are implemented
as

- a KAPSE procedure,

- a MAPSE program,

- a user-written program,
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- a pre-defined tool, or

- a command language script.

If a CP command calls for a program to be invoked, all the
windows named in the PROGRAM SEARCH LIST attribute associated
with the CP's context object are-searched for that program. This
enables the user to specify program names using a convenient
shorthand notation. The program call syntax is like the Ada pro-
cedure call syntax, with modifications to make it more convenient
for interactive use. Like Ada, tool access allows both posi-
tional and named parameters, and IN, OUT, and IN OUT modes.
Parameters may have initial values. Unlike Ada, positional and
named parameters may be freely mixed. The CP parses the parame-
ter association by grouping together all positional parameters,
followed by all named parameters. For named parameters, the CP
convention is that only the last occurrence of a parameter asso-
ciation is used, permitting a user to change a mistyped named
parameter without retyping others. As in Ada, OUT parameters
allow a tool to return values. Thus, a single program invocation
may return multiple values in distinct CP variables which can in
turn be used as IN parameters to other programs. Unlike Ada, the
command language allows missing and default OUT parameters. In
these cases, the CP generates an implicit CP variable declara-
tion. The generated variable's name is the catenation of '%' and
the formal parameter name. This variable is assigned the actual,
or default, output value. If this generated variable conflicts
with an already existing variable, the user is informed, and may
specify that the variable's value should not be modified. Thus,
the user may utilize OUT parameters as desired, without facing
any added typing burden, and without the fear that default OUT
parameters may wipe out useful data.

As an example, tne following might be an Ada subprogram
specification for a COMPILE tool:

procedure COMPILE
( SOURCE: IN STRING;
MSGS : IN STRING;
ERRORS: OUT INTEGER; );

With this specification,

COMPILE TEST

will cause compilation of the current database object TEST, with
messages being sent to the CURRENTOUTPUT device. Since ERRORS,
an OUT parameter, is missing, a variable %ERRORS will be
installed with a value equal to the number of errors detected.

A number of tools come predefined in a typical
user's window. These include:
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EDIT - invoke text editor
COMPILE - invoke Ada compiler
LINK - make an Ada library ready for execution
DEBUG - invoke a program under debug control
HELP - ask for help
GET - set variables from a file
PUT - write an expression
LOGOUT - end the session

Names

The relative window through which the CP views the database
is termed its local context object. All objects viewed through
the local context object have names beginning with '.'. One such
object in particular is .CURRENT DATA. When a program is
invoked, a new local context object Ts created, and a copy of
.CURRENT DATA is placed in it. Thus in a nested program invoca-
tion, all programs see the same objects in .CURRENT DATA, and
have their own local objects elsewhere in the local context
object.

The command language naming convention assumes that any name
without a prefix dot, such as GLOBAL, is in fact a reference to
.CURRENT DATA.GLOBAL and hence is visible to all tools. Any name
with a prefix dot, such as .LOCAL, is in fact local to that invo-
cation. Of course, .CURRENTDATA.GLOBAL is just the full name
for GLOBAL.

Attributes of database objects are named using the conven-
tional Ada attribute notation. Thus D'HELP is the name of D's
HELP object, and X'EXISTS is TRUE only if the object with name X
currently exists.

Types

The CP does not allow the definition of arbitrary types.
Rather a set of types is chosen which is most useful in inter-
program communications: STRING, BOOLEAN, INTEGER, REAL.

Variables

CP variables are useful for storing values local to the CP.
The interactive command environment argues against statically
declared variables of fixed types. Rather, a CP variable is
implicitly declared by its first use, and is always of type
STRING (with implicit conversion to other types in expressions).
This makes MCL smaller and easier to implement without any loss
in functinality, since any value may be encoded as a string.
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In combination with database objects, CP variables provide a
range of possibilities for storing data, as follows:

- CP variables are local to the CP in scope, and are tem-
porary in nature (i.e., disappear at the conclusion of
the CP session).

- Database objects in the CP's context object are global
in scope, but are temporary.

- Objects in any other window are global in scope and
have a permanent lifetime (unless explicitly deleted).

Statements

The if-statement and loop-statement syntax and
semantics are borrowed directly from Ada. The return-statement
causes termination of the CP while a logoff-statement is an invo-
cation of the KAPSE session protocol logoff mechanism.

The assignment statement allows the values of both variables
and (assignable) database object attributes to be changed. For
example

ECSSYSTEM'RELEASE := ECSSYSTEM'RELEASE+l;

The right-hand side of an assignment must be a string. If it is
not, an implicit conversion is performed. GET and PUT enable the
user to read values from standard input or write values to stan-
dard output. An expression, written alone as a statement, has
the effect of PUT (expression); in other words, the value of the
expression is sent to the current output device. Thus one need
only type

TESTOHIGHESTREVISION

in order to find the highest revision number for TEST.

ADVANCED COMMAND LANGUAGE FACILITIES

In addition to the MCL facilities thus far introduced,
several facilities are available for more sophisticated users,
including scripts, input/output redirection, piping, background
tasks, blocks and execution of data as commands. These facili-
ties provide convenient syntax for frequently used command
language capabilities.
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Scripts

A script is a sequence of CP commands stored in a database
object. It is functionally equivalent to a linked executable
program in terms of invocation syntax, help information and
parameter passing. A script may receive IN parameter values and
return updated OUT parameter values if it contains a subprogram
simulation command. This command is similar to an Ada subprogram
body. Indeed, scripts may be written which can, in fact, be com-
piled. The choice to compile or interpret is merely one of effi-
ciency.

Examples:

Following is a script which implements HELP:

procedure HELP (%TOOL: IN STRING := ".CURRENTDATA") is
begin

if not %TOOL'*EXISTS then
PUT ("NO SUCH PROGRAM");

elsif not %TOOLAHELP'EXISTS then
PUT ("NO HELP AVAILABLE");

else
PUT ( CONTENTS(%TOOL'HELP));

end if;
end HELP;

Associated with each database object is an attribute HELP
which names an associated object. This object, if it exists,
contains text help information which is printed. The CONTENTS
function fetches the contents of the database object named in its
argument.

The following script allocates a temporary library, compiles
an Ada procedure into it, links the library, and runs the program
under control of the debugger. Input to the debugger comes from
the user at the terminal. When the user enters "return" to the
debugger, it returns to the script. Termination of the script
causes the library automatically to be deleted.

procedure ADACLG (%PROG: in STRING) is
begin
MAKE LIBRARY (.LIB);
COMPILE (SOURCE-> %PROG

LIB ->.LIB)
LINK (.LIB);
DEBUG (LIBRARY->.LIB);

end ADACLG;
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Input/Output Redirection

Programs which are invoked by means of the Command Language
typically are written to accept input from the default input
object (usually the keyboard) and provide output to the default
output object (usually the display).

'For all GET and PUT procedures, there are forms
with and without a file specified. ...If no file
is specified, a default input file or a default
output file is used. At the beginning of program
execution, the default input and output files are
the so-called standard input file and standard
output file, which are open and associated with
two implementation-defined external files."

[LRM, 14.3]

When a program is invoked, the Command Processor's default
input and default output objects become the standard input and
standard output objects for the program. The Command Processor's
default input and output objects may be changed, utilizing facil-
ities similar to those of Ada. For example,

SETINPUT BATCHEDINPUT

Commands will now be accepted from the database object
BATCHED INPUT until either a subsequent SET INPUT command is
accepted from BATCHEDINPUT or BATCHEDINPUT reaches an end-of-
file state (in which case default input reverts to the CP's stan-
dard input).

It may be desired to locally change the default input and
default output for one command. For example, ES may contain a
standard editing script. If a user wishes to edit the program
TEST according to the script, ignoring the editor's output, the
command

EDIT TEST -< ES -> .NULL

will carry out that function.

Piping

More generally, a user may wish to execute a command,
directing its output to a temporary database object, and then
execute a second command on the results of the first command.
For example, a preprocessor PRE might perform some actions on an
Ada text. In order to preprocess an Ada text file named TEST,
and then use it as input to a program FLIGHTSIM, a user might
write
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PRE SOURCE=>TEST, RESULT=>.TEMP
FLIGHTSIM -< .TEMP

This can be written more conveniently as

PRE SOURCE=>TEST -1 FLIGHTSIM

Pipes represent input/output connections between programs,
files, or devices. They provide programs with a uniform input/
output interface so that, once written, they can be connected
arbitrarily to other programs, files, or devices. Utilizing
pipes, complex applications can be developed by interconnecting
smaller, simpler programs.

In order to use piping effectively, programs must be
designed to utilize the standard text input/output facilities as
an alternative to a specific IN parameter specifying input or
output. In the previous example, FLIGHTSIM's specification might
be

procedure FLIGHTSIM (SOURCE: STRING;
OUTPUT: STRING);

If specific input and output files are not provided, FLIGHTSIM
assumes that input is to come from standard input and output is
to go to standard output. Since piping connects the
STANDARDOUTPUT of one tool to the STANDARDINPUT of another,
this default usage allows for piped connections.

When temporary files are used, the temporary file must be
large enough to hold all of the intermediate results. Piping
establishes two tools as co-routines, with a finite amount of
buffering.

As can be seen, MCL provides a variety of means of composing
programs and passing information among them, including:

- standard I/O redirection

- pipes

- database objects, and

- parameters

Background Tasks

In general, a user of the Command Language will wish to have
the ability to execute a command, or command sequence, in paral-
lel with the execution of additional commands. For example, a
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user may wish to run a lengthy compilation in parallel with an
editing session. To accomplish this, a user might invoke a back-
ground task, as follows:

:COMPILE TEST -&
TY executing
:EDIT OTHERTEST

:STATUS TY

A background command is assigned a task name which may be used to
control .ts execution. This name may be assigned by the CP, or
may be specified by the user (by preceding the command with a
label which serves as its name). The status-command will list
the status of a background task while the WAIT command enables
the user to wait for a background task's completion.

Full Ada tasking is too powerful a facility to utilize in a
Command Language; thus a simpler, entry-less tasking model was
chosen.

Jobs

A command's execution may involve the invocation of a pro-
gram. Each program invocation, referred to as a job, has associ-
ated with it a context object which describes its execution. The
context object name (which is formed from the invoked program's
name) may be referenced to control the program's execution. Each
background command maintains its own composite object of context
objects for any programs it invokes. This enables the user to
control all jobs within a background command in a convenient
fashion.

Statements available to control a job's execution include:

- status: determine the program's status,

- stop: stop the program's execution (so that it may be
debugged, e.g.),

- start: continue the execution of a previously stopped
program, and

- cancel a program's execution, such that it cannot be
restarted.

Blocks

It occasionally is desirable to group a number of statements
together, for example, for execution as a background task or I/O
redirection. The following block performs the execution of the
preprocessor and flight simulator as a background task.
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BEGIN
PRE SOURCE->TEST, RESULT=>.T
FLIGHTSIM SOURCE=>.T

END -> ERROR FILE1 -&

All error messages will be placed in the database object named
ERRORFILE1.

A static, compiled language such as Ada maintains a strict
separation between programs and data: a program is a linked exe-
cutable object, while that program's data may be of any format
(text, Diana, e.g.). In a dynamic, interpretive environment such
as MCL, in which both commands and data are text, this separation
is irrelevant. The EXEC command enables the execution of data as
commands. For example:

%A := COMPILE
EXEC %A& "MYFILE"

This facility enables the user to build commands using CP vari-
ables, strings and concatenation operators.

Example

The MAPSE Command Language does not provide a facility for
"remembering" default parameter values between invocations of
commands. For example, one might wish to support the concept of
editing a (one procedure) program, followed by the ability to
compile that program, without having to specifically name it.
With such a facility a user could type

EDIT MYPROG

4followed by

COMPILE

without having to repeat the name MYPROG. An approach to imple-
menting this facility involves defining a "parameter object" in
the current window, and writing scripts which take default values
from the parameter object. Assuming the existence of a database
object PARAMOBJ, the following scripts accomplish this:

--Edit script contained in a data object named "EDIT"
procedure EDIT (%PROG: in STRING) is
begin

PUT %PROG ->PARAMOBJ;
.CURRENTDATA.EDIT (%PROG); -- .CURRENT avoids

-- recursive call on script
end EDIT;
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--Compile script contained in a data object named "COMPILE"
procedure COMPILE (%PROG: in STRING := PARAMOBJ) is
begin

if %PROG = PARAM OBJ then
GET %PROG -< PARAMOBJ

end if;
%LIBNAME :- %PROG & ".LIB"
MAKE LIBRARY (%LIBNAME)
.CURFENTDATA.COMPILE (SOURCE->%PROG,

LIB->%LIBNAME);
end COMPILE;

MAPSE COMMAND PROCESSOR

This section discusses the structure of the command proces-
sor.

Architecture Issues

The CP is a tool in the sense defined earlier; in particu-
lar, it is written in host-independent Ada, it accepts input from
the (Ada) default input file, writes output to the (Ada) default
output file, and is subject to the standard tool access, policy,
and management controls discussed later. Its only "unusual"
characteristic is that it is, typically, the program invoked on
behalf of a user at Login. The CP consists of a collection of
Ada subprograms, tasks and packages which cooperate in the per-
formance of the command language interpretation function. These
packages modularize the structure of the CP so that future
maintenance of the MCL and CP will be straightforward, and so
that the individual packages themselves can be utilized by other
tools and general Ada programs. For example, the MAPSE Debugger
is based on the CP.

Implementation

The Command Processor contains a front end (PARSE), which
parses user-typed commands into a parse tree. Since MCL contains
many Ada-like statements, this parse tree's definition is similar
to Diana in nature. The Lexical analyzer is generated via the
same maintanance tools utilized in generating the compiler's lex-
ical analyzer. However, it must be modified to avoid look-ahead
if the current token is a newline.

The heart of the CP is a parse tree interpreter
(TREEINTERPRET), which performs the actions specified by a parse
tree. The ability within MCL to execute commands in the back-
ground or as co-routines suggests a task model in which(several
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command trees are simultaneously interpreted by distinct
TREE INTERPRET tasks. All global CP data (CP variables, e.g.)
are shared by these TREE INTERPRET tasks and must therefore be
managed by tasks to maintain synchronization.
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Chapter 7

TEXT EDITOR

The text editor will probably be the most frequently used
MAPSE user-interface. As such, it should be responsive, con-
venient, and powerful though easily learned. A great deal of
care should be exercised in selecting and designing editing
features, not only to enhance productivity, but to ensure that
users will like to use the MAPSE, i.e., not find it tedious,
arbitrary, or frustrating.

IIt is for these reasons that we rejected unconventional

approaches and based our design instead on an editor that has
been shown to be successful, viz the EX/Edit editor, developed at

the University of California/Berkley, and generally used on UNIX
systems. We have a great deal of experience with this and other
editors and feel that the human engineering evidenced in EX/Edit
would be difficult, if not impossible, to surpass for the purpose
of the MAPSE design.

Starting with EX/Edit as a model, the text editor is
integrated as a MAPSE tool by being able to: accept standard or
redirected input and produce standard or redirected output,
respond to interactive commands as well as stored scripts, invoke
any other MAPSE tool or KAPSE function from within an edit ses-
sion and provide an Ada editing mode in which Ada "words" are
recognized as lexical elements.

A full description of editor capabilities and interfaces is
presented in the Text Editor B-5 Specification.
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Chapter 8

COMPILER

The Ada compiler is the keystone tool in the MAPSE and,
ultimately, the APSE. All Ada programs, including those which
form the MAPSE, require translation by the compiler. Thus, the
development cost of Ada programs depends on compiler performance.
The performance of Ada programs depends on the quality of code
produced by the compiler. The reliability of Ada programs
depends on error diagnosis by the compiler and its support of
debugging. The rehostability of Ada programs depends on the
ability to retarget the compiler. These four characteristics:
compiler performance, code quality, error diagnosis and debugging
support, and retargetability, have driven the design of the
compiler.

The compiler does not operate in isolation; it interacts
with the user, the data base, and other MAPSE tools. The first
section of this chapter describes the way the environs of the
compiler have influenced the design. The second section of this
chapter describes the structure of the compiler and the
requirements which lead to that structure. The third section of
this chapter describes the features of the immediate and future
targets which have influenced the compiler design. The fourth
section of this chapter highlights those Ada features which have
received special treatment.

COMPILER ENVIRONS

The compiler does not operate in isolation; it interacts
with the user, the database, and other MAPSE tools. This section
discusses these aspects of the compiler.

The compiler user accesses the compiler through the program
integration facilities, discussed in detail in a separate
document. The program integration facilities control compilation
and linking, library creation and initialization, recompilation,
and the creation of missing library units. The compiler inputs,
passed by the program integration facilities, include the
following:

- The source text, which may come from a file or standard
input.
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- The Ada program library against which to compile and
into which to put the results of compilation.

- Compiler options.

The compiler options (parameters) that can be specified
include the following:

- VERSION, a version name for the compilation.

- USE VERSIONS, which specifies version selection for
referenced units (specifications, enclosing units,
units specified in WITH statements, USE, INLINE and
GENERIC bodies).

- DEBUG, which specifies where symbolic breakpoints may

be set.

- OPTIMIZE, which specifies the level of optimization.

- LIST, which controls what listings, if any, are to be
produced.

The VERSION and USE VERSIONS options support a library that
can contain a number of versions of the same Ada compilation
unit. For example, the library might contain versions compiled
for different target machines, separate debug and optimize
versions, or versions for different target configurations. This
feature is essential to avoid the costly duplication of whole
libraries when related Ada programs share most of their code but
differ in some respects.

The DEBUG parameter controls the placement of breakpoint
information in the compiled code. DEBUG => ON causes the
compiler to place debug information in its output so that the
debugger may set a breakpoint before or after any statement.
With DEBUG => OFF, the compiler does not place debug information
in its output. As a result, breakpoints cannot be set at
arbitrary statements, but only at higher level points such as
subprogram invocations.

The OPTIMIZE parameter specifies the level of optimization
the compiler may use. The levels correspond not to arbitrary
sets of optimizations, but to the extent to which optimization is
permitted to affect debugging. The following four settings are
provided for this option:

CANMODIFY The compiler must not move fetches or stores
past statement boundaries; optimization is
effectively restricted to in-statement
optimization. The user can modify the value
of a variable at a breakpoint and expect that
value to be used in subsequent execution.
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CANINSPECT The compiler must not move stores past
statement boundaries; optimizations which
move expressions are permitted. The user can
inspect a variable at a breakpoint and expect
the value to be the most recent value of that
variable.

ON The compiler is free to move both fetches and
stores past statement boundaries and to keep
variable values in registers. The user may
still inspect and modify variables; however,
the code listing must be consulted to
determine where this is meaningful to do.

OFF No optimization is performed.

The LIST option controls which listings are to be generated
by the LISTER phase. The OFF and ON settings respectively
disable and enable all listings. The following settings may be
used in any combination to enable specific listing features:

SOURCE The Ada Source input is listed.

INCLUDE The contents of files specified in the
INCLUDE pragma is listed.

XREF A cross-reference of symbols is listed. This
includes the nesting level and statement
number of the declaration and the statement
numbers of all references to the symbol, and
a call/use summary for subprograms and
entries.

ATTRS The attributes of each symbol are listed. If
XREF is also specified these are provided in
a single listing.

ASM The assembly and machine code are listed for
each statement.

STATS The code and data size for each subprogram,
the compilation time, and the number of
statements are listed.

ENV A cross-reference of external symbols is
listed.

In addition to these outputs, errors, warnings, and notes
are listed. The LEXSYN phase incorporates a two-level error
recovery technique. It first evaluates which local repair
(deletion, insertion, replacement) results in the fewest errors
on scanning ahead a fixed number of symbols. If one of the
repairs is effective, it is carried out. Otherwise, the second
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level of error recovery is attempted. The stack is popped until
it has a shift transition for a special error terminal symbol.
Then action routines for these rules advance the input until a
legal shift symbol or a special beacon symbol (e.g., semicolon)
is found. In any case an error message is output.

The SEM phase discovers three major classes of semantic
errors: ambiguous overloaded references, undefined objects, and
incompatible operand types.

The back end phases only output warnings. FLOW detects
constant computations which can cause exceptions. TNBIND detects
local variables which are live at entry; that is, potentially
uninitialized local variables.

The user can further control compilation through the pragmas
discussed near the end of the "Compiling Ada" section. Taken
together, the compiler options and pragmas give the user
considerable control over the quantity and kind of processing,
the quantity and kind of listings, and the interaction with the
data base and other MAPSE tools.

The compiler, together with the program integration
facilities, support Ada libraries as a composite object in the
KAPSE data base. This is discussed at length in the program
integration facilities. From the viewpoint of the compiler, the
library exists at a single level, accessible uniformly through
the Virtual Memory Management (VNM) system. The compiler need
not concern itself with reading and writing information in the
library. The VMM causes pointers to separate compilations to
appear to the compiler as local pointer references. This vastly
simplifies the compiler design. In addition, the VMM manages the
in-core windows on the library so that the compiler may operate
efficiently in smaller configurations, without arbitrary
restrictions on program unit size.

The program integration facility addresses the optimization
of recompilation, by postponing recompilations and avoiding
redundant recompilation. This feature, described in detail in a
separate document, is crucial to the overall performance of the
Ada compilation facility. The compiler system will not only meet
performance requirements expressed in lines per minute, but can
entirely bypass whole compilations which the program integration
facility determines are unnecessary.

The compiler interfaces with the linker and the debugger
through the library. The compiler is not just designed for the
MAPSE, however. It is designed to grow to support interfaces
with other Ada tools. These interfaces are supplied by the Diana
program representation in the library. Some of the envisioned
tools which contributed to this design are the following:
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- An Ada structured editor which directly operates on the
Diana Abstract Syntax Tree (AST), bypassing LEXSYN.

- Any of a number of program analysis tools operating
either on the AST or full Diana.

- Program transformation tools which augment Ada,
operating either on the AST or full Diana. For
example, a transformation which inserts code to collect
the execution profile of a program.

- Tools to directly interpret Diana, after appropriate
transformations. This would permit very high level
debugging to be performed.

- Tools to perform functional simulation of ECS software
on host computers. The debug "hooks" placed by the
DEBUG compiler option permit run-time statement
processor routines to gain control of execution, not
only for debugging, but for a process control interface
to environmental models, recording of variables,
implementation of diagnostics, and modeling target code
execution time. All this operates at full host speed
while providing a high fidelity model of elapsed ECS
computer time and real time interactions.

A compiler design that failed to consider the likely
patterns of growth of the APSE would be a dead end design; this
compiler design goes well beyond the MAPSE. We expect it to be
able to support both tools we have envisaged and, by its flexible
interfaces, stimulate the production of tools which have not yet
been invented.

COMPILER STRUCTURE

The structure of the compiler has been chosen because it has
been shown to work in a number of other implementations. This
section highlights some of the features of that structure which
are responsible for its success. In particular, this section
discusses the choice of Diana as an intermediate language, the
Virtual Memory Management (VMM) facility, the Front End/Middle/
Back End structure, and the table driven nature of many of the
compiler phases.

Diana

The intermediate language Diana was chosen for this design
for a number of reasons. Technically, Diana is superior to the
alternative intermediate languages that have been proposed for
Ada; it combines the best features of its predecessors, AIDA and
TCOL/Ada. Since Intermetrics participated in the design of both
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TCOL/Ada and Diana and in the review of AIDA, we are familiar
with the details of each. Among the major advantages of Diana
are the following:

- Based upon the abstract syntax tree developed by the
Ada formal semantic definition team;

- Applicable to a compiler back end, compiler front end
(for separate compilation checks), and to other APSEtools (recompilation checker, text formatter) ;

- Definable in Ada;

- Efficiently implementable;

- Allows a human readable representation;

- Retains the structure of the original source text.

In addition, given the high probablility that Diana will become a
commonly used interface for Ada tools produced by different
contractors, it is the only practical choice for the MAPSE and
compiler.

In the course of compilation, the Diana representation is
transformed in a number of different ways. After LEXSYN Diana
has no semantic attributes and is known as the Abstract Syntax
Tree or AST, for short. After SEM Diana has a full set of
semantic attributes. After EXPAND, the level of the language has
been lowered to explicitly include the run time storage model.
After VCODE the level of the language has been lowered to include
features of the target instruction set.

Changes to Diana are of three forms: (1) Attributes may be
added to nodes, as STORAGE does to represent storage allocation.
(2) Tree transformations are applied which replace one set of
nodes by another equivalent set of nodes, as in FLOW. (3) The
underlying representation of Diana may be augmented to expedite
certain kinds of processing, as when two-way links are added in
the output of CODEGEN to expedite the processing by FINAL.

Virtual Memory Management

The Virtual Memory Management facility (VMM) is based on the
LG facilities [Fostel 80] which have performed a similar function
in existing compilers. VMM provides for the following
capabilities (further details may be found in Chapter 10 of this
document):

-Translation between internal and human readable form
providing both for test input to phases and inspection
of phase output.
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- One level storage management of a potentially huge
database.

- Clean compiler interface transparent to change of
representation for efficient rehosting.

Structure

The organization of the compiler into Front End, Middle, and
Back End logically separates different classes of processing:

- The Front End is target independent.

- The Middle selects the run time representation of Ada
objects and expands references to objects to reflect
these choices.

- The Back End optimizes and generates code.

Note that although some target dependent transformations
occur in the Middle, so that they can be subject to optimization,
this does not mean that 2/3 of the compiler is target dependent.
Most of the Middle (GENINST, STATINFO, and large parts of EXPAND)
are independent of the target. Furthermore, the target
dependencies of the back end are segregated where possible in
tables rather than in the algorithms which are driven by these
tables. For example, TNBIND is target independent in all
respects except for the tables which describe the classes and
number of registers and the payoff functions which describe
profitability. In short, expanding machine dependencies early
does not increase retargeting costs, rather, they are both
reduced and isolated.

It is important in many cases (e.g., during the initial
stages of debugging a program) to minimize compilation time, with
a possible sacrifice in run-time efficiency. This can be
accomplished by specifying the optimization option to the
computer as OFF. The effect is to obtain a "quick path" through
the compiler, affecting EXPAND and the Back End phases. For
EXPAND, the INLINE and MONITOR pragmas are disregarded, and no
attempt is made to optimize away constraint checking (the
SUPPRESS pragma is still obeyed, however). For FLOW, the
internal form of a compilation unit is changed to an indirect
Diana representation in Setup. No other FLOW transformations are
performed. VCODE processing is unchanged. TNBIND processes a
statement at a time; registers are not allocated qlobally. Each
forced-CSE node is assigned a different temporary location.
CODEGEN is unchanged. FINAL performs no peephole optimizations.
For the 8/32 all branches are long branches; literals are pooled
whether or not referenced. For the 370, code is segmented, but
no attempt is made to choose the best boundary at which to
segment. Literals are placed in the literal pool rather than in
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the segment where they are referenced.

TARGETING AND RETARGETING

The compiler is designed to produce high quality code for
the IBM 370 and Perkin-Elmer 8/32. This section discusses the
design for the production of high quality code, including both
the compiler and the run-time model. Beyond this, the compiler
will be retargeted for other host machines and ECS target
machines. This section also discusses the applicability of this
design to machines other than the two initial hosts.

Code Quality

The compiler is conservatively designed; it uses state of
the art techniques as opposed to unimplemented research.
Notwithstanding, the list of optimizations it performs is
impressive:

- Generic instantiation optimization under pragma
control.

- Constraint checking optimization.

- Storage alignment.

- Inline expansion of subprograms, under pragma control.

- Task optimization, under pragma control.

- Literal pooling.

- Concatenation optimization.

- Local blocks folded into enclosing stack frame.

- Zero-trip-loop test optimization.

- Limited interprocedural analysis.

- Constant folding for standard functions, operators,
indexing, selection, aggregates, type conversion,
constraint checking, and change of representation.

- Constant propagation.

- Elimination of unreachable code.

- Elimination of common subexpressions.
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- Movement of invariant code from loops.

- Induction variable elimination.

- Reduction of operator strength.

- Test replacement.

- Conversion of Boolean operations to transfer logic in
control contexts.

- Algebraic simplifications.

- Transformations of if, case, loop, and exit when with

constant arguments.

- Bast register optimization (for 370).

- Special cise code selection.

- Add.2' mode determination which folds constants and
additions into the effective address computation.

- Exezution ordering.

- Global register and temporary allocation.

- Storage sharing of temporary results.

- Elimination of dead code, that is, computations whose
results are not needed.

- Peephole optimizations for adjacent jumps and cross-
jumping.

- Relative branch optimization (for 8/32).

- Code segmentation (for 370).

It may also be noted that there are a number of
optimizations, commonly listed in the literature, that are not
performed because the cost in compiler complexity cannot be
justified by expected payoff:

- Loop unrolling is only done for loops known to be
executed one or zero times. A more oeneral form of
this optimization may be easily added for targets for
which it has higher payoff.

- Loop fusion requires analysis of data flow between
array components referenced on different iterations.
This analysis cost cannot be justified by the expected
(small) payoff.
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- Movement of invariant code from loops.

- Induction variable elimination.

- Reduction of operator strength.

- Test replacement.

- Conversion of Boolean operations to transfer logic in
control contexts.

- Algebraic simplifications.

- Transformations of if, case, loop, and exit when with
constant arguments.

- Base register optimization (for 370).

- Special case code selection.

- Address mode determination which folds constants and
additions into the effective address computation.

- Execution ordering.

- Global register and temporary allocation.

- Storage sharing of temporary results.

- Elimination of dead code, that is, computations whose
results are not needed.

- Peephole optimizations for adjacent jumps and cross-
jumping.

- Relative branch optimization (for 8/32).

- Code segmentation (for 370).

It may also be noted that there are a number of
optimizations, commonly listed in the literature, that are not
performed because the cost in compiler complexity cannot be
justified by expected payoff:

- Loop unrolling is only done for loops known to be
executed one or zero times. A more aeneral form of
this optimization may be easily added for targets for
which it has higher payoff.

- Loop fusion requires analysis of data flow between
array components referenced on different iterations.
This analysis cost cannot be justified by the expected
(small) payoff.
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- Hoisting and sinking of code are primarily space
optimizations which require additional, costly
analysis. In addition, the cross-jumping peephole
optimization catches many of the common cases of this
optimization.

The compiler back end phases share a number of design
features that simplify the design, reduce the amount of compiler
code, yield good code quality, and, as we shall argue later,
reduce retargeting costs:

- Dataflow analysis is based on structured control flow.

- Payoff driven optimizations choose the most profitable
alternatives both for code and register allocation.

The code generation for the 370 and 8/32 is based upon
successful compiler designs for both of these machines by
Intermetrics and COMPASS.

Run-time System

As important as compiler optimization may be, the choice of
run-time system is as, or more, important to the run-time
performance of ECS code. For this reason, the compiler design
can be tuned to ECS requirements by pragmas. These pragmas
control the management of storage, providing a range of options
appropriate for different requirements. In the common case, a
stack frame may be allocated static storage, reducing run-time
storage management costs to zero. Other options include control
of storage for accessed data which cannot be statically allocated
but which must nevertheless be handled at very low overhead.

Retargeting

While the compiler will first be targeted for the IBM 370
and then retargeted for the Perkin-Elmer 8/32, we do not feel
that tiis by itself is sufficient proof of retargetability.
Because the two machines are so similar in word size, data
formats, registers, and instruction sets, much of the back end
that will be the same for these two machines will be different
for, say, an ECS computer with shorter word length, different
data formats, different register complement, addressing modes,
instruction sets, etc. We know the basic design is appropriate
for other target architecture because it has been used
successfully in existing compilers for other machines (e.g., the
8086 and PDP-11). Moreover, the design is highly parameterized

and table driven. Retargeting is accomplished, to the extent
practical, by changing parameters and substitutinq differentdriving tables. The basic algorithms are unchanged.
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The target parameters include the following:

- word size(s) and data formats for the storage
allocation algorithm.

- register classes and numbers for TNBIND, the register
allocator.

The tables to be changed include the pattern/transformation
tables of EXPAND, VCODE, CODEGEN, and FINAL. EXPAND will be
changed only in the part that deals with the run-time model; much
of EXPAND is target independent.

The target payoff functions used by FLOW and TNBIND must be
changed to reflect instruction size and costs for the new target.
The FLOW and TNBIND algorithms are largely target independent,
except for these payoff functions.

The tables in FINAL that drive the building of object code
and the formatting of the assembly listing must also be changed.

COMPILING ADA

The compiler attempts not only to provide a correct
implementation according to the language definition, but also to
provide an efficient implementation of Ada language features.
The compiler is designed to be efficient along the following
dimensions:

*- Size and speed of compiled code.

- Size and speed of the compiler and run-time system.

- Simplicity of the compiler.

The compiler is designed so that the implementation of an
Ada feature does not cause run-time overhead for those who do not
use the feature. For example, there is no time or space overhead
for exceptions in a procedure that neither raises nor handles an
exception.

For many Ada features, processing in the general case can be
quite complex. The compiler, of course, must be prepared to
handle such cases. However, the simpler case can be expected to
be the norm and must be handled more efficiently. For example,
optimization will handle programs with goto statements; however,
processing is expedited by the reasonable assumption that goto's
will be rare.

These principles have been applied repeatedly in this
compiler design. The following paragraphs highlight the handling
of specific Ada features. The order of topics corresponds to the
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LRM presentation order. Parenthesized references give the
pertinent sections of the compiler B-5 specification.

Lexical Elements

Lexical elements are handled by the LEXSYN phase of the
compiler (3.2.2). The representation of literals is chosen by
EXPAND (3.2.7.2a). Reserved words are detected by an exact hash
function on each identifier (3.2.2.2c). This is rapid and
simplifies the finite state machine tables that are part of the
lexical analyzer. Both built-in and implementation-defined
pragmas are supported. These are discussed near the end of this
section.

Declarations and Types

The STORAGE phase (3.2.6) determines the representation of
each type and object according to the run-time model (10.1).
However, it may also be necessary to calculate the
representations earlier, for cases where a storage attribute
appears in a static expression (3.2.6.2). This is accomplished
through a procedure CALC REP, which can be invoked by SEM. The
elaboration of declarations is accomplished in the EXPAND phase
of the compiler (3.2.7.2b). A listing of declared symbols and
their attributes is a product of the LISTER (3.2.13.2b).

Constants whose length is determined by a dynamic size
initialization expression require the special handling discussed
in (10.3.2).

The implementation of a derived type causes operations of
the parent type to be inherited; the subprogram bodies are not
copied (3.2.3.2h) .

The overloading of enumeration literals is handled along
with other overload resolution (3.2.3.2f).

For arrays, the component subtype descriptor is not
replicated for each component (10.1.5). Static descriptors do
not appear at run-time.

The dynamic parts of records are reached by offsets from the
fixed part rather than by pointers (10.1.6). This is required to
assure efficient "block assignment". A discriminant descriptor
efficiently represents the tree of variants and speeds constraint
checking (10.1.6).

The Ada limitations on access types limit the potential for
aliasing which complicates optimization of other languages.
Ada's limitations are used to good effect to simplify FLOW
optimization (3.2.8).
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Names and Expressions

The EXPAND phase makes the fetching of values from names
explicit (3.2.7.2c). This allows the fetch operation to be
separated from the addressing of the location. As a result, the
addressing computation in a fetch context can be recognized as a
common subexpression of a similar computation in a store context,
e.g., A(I,J) := B(I,J)+l.

SEM (3.2.3) resolves overloading for indexed components and
selected components. STORAGE adds a component size attribute to
each array node and a rep attribute to each record node
(3.2.6.2b) in preparation for EXPAND (3.2.7), which generates
in-line addressing operations for array and record references.

Packed array slices may require that both a byte address and
a bit offset to be computed. This is an issue both for parameter
passing (10.1.5) and for assignment (3.2.9.2a). In each case,
the bit offset is only present when necessary.

Ada attributes, such as 'FIRST, are normally processed by
the EXPAND phase (3.2.7(l)), which turns them into the
appropriate data references. However, these attributes are
interpreted in the SEM phase (3.2.3) when they appear in a
context requiring a static value.

Overload analysis of aggregates is performed by SEM
(3.2.3.2e). Aggregates are incorporated into overloading
analysis in a way which makes them appear like calls to an
anonymous procedure. The aggregates themselves are expanded by
EXPAND (3.2.7.2c), which makes special cases of static
aggregates, static constraints, array aggregates with an others
choice, packed bit-strinq aggregates, and aggregates that
initialize constants or variables.

The logical operators are implemented as control loqic in
control flow contexts (3.2.8.2g). Operators with constant
operands are computed at compile time (3.2.8.2c). In general,
operators are subject to special case analysis to generate
efficient code (3.2.9).

Two kinds of compile time arithmetic are provided (3.2.3.2g)
to handle both target machine arithmetic for constant folding and
arbitrarily accurate arithmetic for static expressions.

Statements

In general, EXPAND (3.2.7.2d) expands code for statements.
Later, VCODE (3.2.9) chooses efficient code for special cases.
For example, the case statement will be coded differently
depending on whether the alternatives are compact or sparse. As
with other back end choices, the OPTIMIZE SPACE/TIME criteria are
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applied. See (3.2.9) for a discussion of space/time tradeoffs.

The implementation of blocks yields zero execution costs at
block boundaries. This is accomplished by incorporating local
variables and temporaries in the enclosing stack frame
(3.2.7.2d). This is possible even when the block contains an
exception handler, due to the use of handler maps (10.4.2).

Assignment statements are expanded (3.2.7.2d) to make
constraint checking explicit. Where, as in packed bit slice
assignments, the starting position might not be on an even byte
boundary, a bit offset is computed (3.2.7.2d). The assignment
statement is also the subject of extensive case analysis in VCODE I
(3.2.9.2), where the length and alignment of the operands create
special cases as does the range of lengths (if dynamic) and the
relative alignment of the operands. Assignments that involve
concatenation are optimized to eliminate the use of a temporary,
if possible. In FLOW (3.2.8.2c), references to variables that
are assigned constant values are replaced with the constant
value. If this eliminates all references to that assignment, it
will be eliminated by TNBIND (3.2.10).

If, case, loop, and exit when statements are processed at
compile time for constant valued parameters (3.2.8.2). This
effectively implements conditional compilation, since unreachable
code that results is eliminated. For example, zero and one
iteration loops are unrolled. The first case yields no code, the
second dispenses with the loop logic. EXPAND (3.2.7.2d) places a
zero trip test outside of each loop and places the loop
termination test at the bottom of the loop. In the usual case,
the zero trip test can be performed at compile time. In any
event, the loop proper now will be executed at J-Azt once,
assuring that FLOW optimization (3.2.8) will t've a s3fe and
profitable target location for invariant code it moves from the
loop (3.2.8.2e) and for induction variable elimination and
reduction of operator strength (3.2.8.2f).

The goto statement is restricted in Ada, so that no legal
program contains a multiple entrance statement. This fact is
employed in FLOW optimization (3.2.8) which processes data flow
problems as a hierarchy of control structures (3.2.8.2b). This
processing is efficient both in compile time and space, while
achieving high levels of optimization.

Subpr Urams

Overload resolution for subprogram calls is done by SEM

(3.2.8.2c). The expansion of subprogram calls and returns is
handled by EXPAND (3.2.7.2d and e) following the parameter and
stack frame convention of the run-time system (10.2.1 and 10.3).
The conventions pass small parameters by copy and large
parameters by reference. Small parameters include scalars, and
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arrays and records less than two words in length. The first few
parameters are passed in registers of the appropriate register
class. The actual number of registers of each register class
used for parameter passing is a compiler imvlementation
parameter. Subtype descriptors are only passed for unconstrained
array formal parameters.

The conventions for establishing and freeing stack frames
(10.3) provide for exception handling and dynamic sized function
return values, but not at the expense of procedure calls that do
not involve either of these features.

The Ada calling conventions restrict the aliasing that may
result from parameter passing. This is exploited by FLOW
optimization (3.2.8) when it computes the effects of fetching and
storing formal parameters values.

Packages

SEM (3.2.2.2b) produces separate symbol tables for the
visible part and the private part of packages. This simplifies
USE processing. Predefined packages are included in the parent
scope of every library unit. EXPAND (3.2.7.2f) expands
references to package data. Such data is referenced from the
stack frame for the enclosing unit, which allows packages to be
treated uniformly, whether library units or subunits.

Visibility Rules

LEXSYN (3.2.2.2b) associates a symbol table with each scope.
This symbol table includes, by reference, the USEd symbol tables
borrowed from other scopes. Because the Virtual Memory
Management pointers to other compilation units are no different
from other pointers, the symbol table lookup is simplified.

Renaming is processed by EXPAND (3.2.7.2g) so as to perform
any necessary constraint checkinq A store node is generated to
save the address of the renamed object or component.

FLOW does a limited amount of inter-procedural analysis for
procedures that are part of a single compilation unit. For other
procedure references, FLOW makes a conservative assumption about
what a given procedure can conceivably modify, based on
visibility rules. For example, a call on a library procedure
cannot modify the caller's local variables unless they are passed
as in out or out parameters.
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Tasks

EXPAND transforms tasking constructs into calls to run-time
system routines (3.2.7(5) and 3.2.7.2h) according to the KAPSE
specification. Rendezvous optimization occurs if the user
specifies the pragma MONITOR(T) for a task or task type, T. This
reduces the number of times the scheduler is called. This
approach was chosen to provide a correct implementation and
greater efficiency for a common special case without the compile
time analysis required to determine when it is appropriate. Such
an implementation provides an adequate facility for KAPSE
implementation and can be extended when more ambitious tasking
optimizations, e.g., (Habermann 80] are better understood.

Tasking requires that the run-time system support multiple
stacks. To do this efficiently, the run-time system provides a
dynamically managed tree of fixed-size contiguous data storage
composed of stack segments (10.2.1). Each activated task
acquires a stack segment from heap storage. Subsequent growth of
a task's stack may require the allocation of one or more
additional stack segments. Stack segments are freed as they
become unused. The size of a stack segment is generally large
enough to hold the stack frames of several procedures. In this
way, the cost of heap management is minimized, for calls on the
heap manager will be relatively infrequent. The fixed part of
the stack and any single dynamic size value is contained in a
single stack segment to allow efficient addressing of its
contents.

Program Structure and Compilation

These features of Ada are largely handled within the design
of the program integration facility, described separately. The
LISTER (3.2.13.2.e) provides an environment listing. This
listing gives a cross reference for each external symbol
referenced in the compilation unit. This information is
collected by STATINFO (3.2.5).

Exceptions

Exceptions are described in detail in (10.4). This feature
is implemented with the goal of minimizing the cost of processing
unexceptional code, at the expense of interpreting exceptions
when they do occur.

Ada places restrictions on the extent to which code that can
raise exceptions may be transformed [LRM 11.8]. The compiler is
designed not to move code (3.2.8, 3.2.9) that could cause
exceptions to a point where an exception would be handled by
another exception handler.
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When compile time computation of constant expressions raises
an exception, the corresponding code is replaced by code to raise
the exception (3.2.8.2c).

Generic Program Units

GENINST (3.2.4) is responsible for processing generic
declarations, instantiations, and references to the
instantiations. The OPTIMIZE(SPACE) pragma may be used in the
generic part to control whether generic procedures with formal
procedure parameters result in separate instantiations or a
single instantiation with a procedure parameter. This choice of
instantiation method is independent of the use of the OPTIMIZE
SPACE/TIME pragma for the body of a generic procedure.

Representation Specifications

STORAGE (3.2.6) processes representation specifications. It
determines the actual storage layout for all types and checks
representation specifications for validity. EXPAND (3.2.7)
translates references to data so that addressing is explicit.
For example, EXPAND generates extra code for for loops with an
enumeration type loop parameter with a representation
specification.

Input Output

The compiler, per se, does no special processing for input
output, short of accessing the predefined input output packages
and mapping input output operations to references to a more
primitive package. This mapping is performed by GENINST (3.2.5).
The primitive input output operations are provided by the KAPSE.

Predefined and Implementation Defined Pragmas

LF SYN (3.2.2) processes the INCLUDE pragma. The
LIST(I iDE) compiler parameter controls the listing of included
text (. .13.2a). The LIST pragma is also handled by the LISTER.

LEXSYN places the MEMORYSIZE, STORAGE UNIT, and SYSTEM
pragmas in the Diana tree. These establish values for the
configuration and machine dependent constants.

STORAGE (3.2.6) and EXPAND (3.2.7) process CONTROLLED and
PACK. Additional control of storage is provided by the pragmas
MARK RELEASE and STATIC (3.2.7.2a and 10.2.2.3). Accessed data
(10.1.2) fall into one of four categories depending on whether
they reside in the stack or on the heap and whether storage
reclamation is automatic or explicit. These categories of
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accessed data are called Collection data, Controlled data,
Checkpointed data, and Normal data. These choices allow the user
to decide between time efficiency and flexibility of
allocation/deallocation. These are described in detail in
(10.2.2) and summarized in (10.2.2.5). Note that the design does
not provide a built in automatic storage reclamation facility,
such as a garbage collector. The provision of a garbage
collector would add a substantial additional cost to the
implementation, since the garbage collector would have to know
the locations of all pointers. The overhead in time and space of
garbage collection is generally incompatible with the
requirements of real time programming in an ECS environment. The
storage management options provided by this design have minimal
overhead and while admittedly inadequate for artificial
intelligence applications, are adequate to program both the MAPSE
and ECS applications. Should a subsequent implementation support
automatic reclamation as the default, all existing programs using
the default allocation of this design would continue to run
correctly.

The INLINE, INTERFACE, and SUPPRESS pragmas are processed by
EXPAND (3.2.7). The optimization of constraint checking
performed by EXPAND should reduce the need for the use of the
SUPPRESS pragma in many cases.

The OPTIMIZE pragma is used by several compiler phases to
choose between alternative program transformations. GENINST
(3.2.4.2d) uses OPTIMIZE to determine the proper instantiation of
generic subprograms with subprogram formals. EXPAND and back end
phases use OPTIMIZE in the payoff functions used to compute the
relative value of alternative transformations.

The PRIORITY pragma is taken into account by EXPAND (3.2.7)
in its expansion of tasks.
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Chapter 9

DEBUGGER AND EXECUTION CONTROL

INTRODUCTION

The MAPSE debugger design addresses the requirement for exe-
cuting and debugging three classes of Ada software: (a) MAPSE
and APSE tools which are intended to execute on the host, (b)
embedded computer software (ECS), developed and verified on the
host but intended to run on a target machine, (c) more general
Ada programs (e.g., analysis, management tools, etc.) intended to
run on the host. The selected design approach supports all three
and lays a foundation for future comprehensive simulation and
debugging facilities within an APSE.

It should be emphasized that the view taken here is that
debugging and execution control (simulation) are in fact aspects
of one activity, that of observing (or altering) the workings of
Ada software while under execution.

REQUIREMENTS

Figure 9-1 shows a variety of potential APSE operational
configurations.

STONEMAN provides the following definitions and require-
ments:

"An APSE adopts a host/target approach to software
construction, that is, a program which will exe-
cute in an embedded target computer is developed
on a host computer which offers extensive support
facilities. Except where explicitly stated other-
wise, this document refers to an APSE system run-
ning on a host machine and supporting development
of a program for an embedded target machine."

[STONEMAN, 2.B.2]
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HOST/TARGET MACHINE/TARGET ENVIRONMENT CONFIGURATIONS*

la. 0: HOSt Emulated Target; lb. Cl: Host Emilated Target;

Host Simulated Target External Target Envirarnat

Envircamt

ic. C2: Host onnected Target; ld. C3: Host Connected Target;

Host simulated Target External Target Envircment

Environment

le. C4: DiscCnnected Host; If. CS: Disconnected Host;

Host Simulated Target External Target Envirmuent

Et

ig. C6: Host and Target Same; lh. C7: Host and Target Same;

Host Simulated Target External Target EnvirOirnt
Envirc t

*Fairley: "Ada Debugging and Testing Suppcrtive Environnents"

A CM 3/80
Fig. 9-1

9-2

INTERMETRICS INCORPORATED e 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 a (617) 681-1840



"An APSE shall permit testing and debugging of an
Ada program executing in any target machine sup-
ported by an APSE. It shall be permitted for such
a program to use the machine-dependent features of
the language. The facilities for testing and
debugging of target-resident programs should be
based upon the equivalent facilities for host-
resident programs."

[STO1 MAN, 4.E.101

Based on the above and the minimal APSE objectives of the
S.O.W., the current debugger/controller design encompasses (or
provides a basis for) configuration C6: host and target same,
i.e., for the development and checkout of MAPSE/APSE tools and
other general Ada programming, and configuration CO: host emu-
lated target, i.e., for the development and checkout of ECS
software intended to run on a target machine. Two other confi-
gurations influence the design, viz C2 and C3. In these cases,
ECS software runs on an actual target machine being controlled
and/or supported by a host and either simulated or real environ-
ments. The design philosophy accounts for C2 and C3 but specific
features are considered outside the current scope of work.

The KAPSE debugging tool, in operation, establishes through
KAPSE facilities a "controller/controlled" relationship with any
executing Ada program. That is, the debugger may start, stop or
modify a controlled program. Using this mechanism, the proposed
design meets every requirement of the SOW. Specifically, the
debugger will be able to activate breakpoints:

- before or after any Ada statement

- at a statement label

- after every statement (single stop) or after every n
statements

- on exceptions

- on entry and return from subprogram units

- based on problem time (this is a suggested future APSE
tool, see discussion below).

At a breakpoint, execution is suspended and control is
transferred to the debugger to accomplish any of the following
actions:

- set Ada variables

- modify flow of control by allowing execution to con-
tinue at a particular statement or label, or causing
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return from a procedure or function

- raise an exception

- single or multiply step the program

- set conditions to modify or activate other breakpoints

- exercise KAPSE interfaces (this is a suggested future
APSE tool: see discussion below).

In addition, at any breakpoint the debugger can inquire
about the executing program, i.e., it can:

- display Ada variables

- trace procedure, statement or task history

- change scope to view any variables

- dump any and all variables in active scopes

- list the scopes and breakpoints.

The debugger syntax to accomplish the commands and actions
listed above is implemented as extensions to the basic MAPSE Com-
mand Language (MCL) and therefore the debugger has at its dispo-
sal the MCL at any breakpoint. As a consequence of the
integrated approach, the user can bring to bear the full power of
the MAPSE while debugging, i.e., activate any MAPSE tool or
facility in support of this objective. This can be effected
either interactively or from stored scripts in a batch processing
environment. In batch the breakpoints are set up in advance by
commands from a script file. When a breakpoint is hit, the

predefined breakpoint actions will be executed and the program
will resume. Output will be directed to a file.

DESIGN CONSIDERATIONS

Successful source level debuggers have been written for
other high level languages, and these can provide useful models
for an Ada debugger. However, the Ada language and the MAPSE
environment differ from others in two ways that have a direct
effect on the debugger:

a. Ada supports multitasking. Thus, when a single program
is "run", a number of Ada tasks may be active con-
currently.
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b. Ada is designed to support embedded computer systems
(ECS), and many Ada programs will be targeted to spe-
cial machines with limited resources.

Much of the functionality of the MAPSE debugger is typical
of a well-crafted source level debugger. However, the fact that
Ada supports multitasking requires special consideration. Clas-
sical debugger design has been based on the conceptual framework
of a single task executing a program. However, Ada programs may
involve multiple tasks executing the same program code. This
requires that some concepts which were well-defined in a single-
tasking environment must be carefully extended in order to remain
valid in a multitasking environment.

In a single-tasking environment, a debugger can set a break-
point at a particular point in the program. When program control
reaches a breakpoint, program execution is suspended and control
is passed to the debugger. The user is then able to examine and
modify data. Finally, the suspended program is resumed, perhaps
at a different point in the program. The context of this suspen-
sion is clear and consists of two parts. First, there is the
static scope for the particular point in the program where the
breakpoint was set. Second, there is a designation of the state
of the program whose operation was suspended. This state con-
sists of the subprogram call chain, that is, a listing of those
points where the virtual machine saved its context and began to
execute a subprogram and where control has not returned yet from
that subprogram.

In a multitasking environment, the context of a suspen-
sion must be extended. First, when a task hits a breakpoint and
control passes to the debugger, the user is told which task was
suspended. Thus, the context of the suspension must be (task id,
breakpoint scope, call chain). When one task hits a breakpoint
and control passes to Debug, other tasks are frozen. This
guarantees that the Debug user will be examining and modifying
a static environment. When control is returned to the program by
user commands to Debug, all tasks are unfrozen and the program
execution resumes in its possibly modified state.

The interface between the MAPSE debugger and the Ada RTS has
been carefully set up to minimize impact on the Run Time System
and the running program it controls. That is, the Run Time Sys-
tem provides a few basic elements of control and information
transfer, and Debug does the rest of the work. The RTS actions
are automatic and simple. It is Debug that maintains a data base
and recorded commands. This clean separation of Debug Support
Functions and Debug Processing allows easy extensibility of Debug
capabilities with minimal effect on the Ada Run Time Environment.

Hooks" were chosen to implement the concept of an Execution
Control Point" because of their simplicity, efficiency, and
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extensibility. Hooks have a minimal impact upon the Ada pxogram
both in execution time and program space, yet provide Debug with
full control over the program being debugged. The hook informa-
tion table compiled by the Compiler and Link Editor provide a
place to store additional information in the case of APSE exten-
sions. Additional information concerning the execution time or
hardware side effects of each statement could be made available
to Debug or other APSE tools by having them recorded in the hook
table.

The "hook approach" directly addresses the tradeoffs between
interactive debugging and batch verification testing. Considera-
tions of the differing characteristics argue in favor of imple-
menting breakpoints by having hooks placed in the object code by
the compiler at every point where a breakpoint could occur.
These hooks in a sense instrument the code and are implemented
with great efficiency, causing but a small increase in running
time, not noticeable by the interactive debugger. However, such
instrumentation proves to be more efficient than the traditional
interrupt approach for large scale verification testing, which
requires more frequent context switching. Instrumentation pro-
vides the highest level of control at the lowest cost. The den-
sity of hooks in a block of object code determines how closely
the execution of that code can be monitored.

The programmer can, through the use of the compiler parame-
ter DEBUG, select one of two levels of hook density. With DEBUG
OFF, the compiler will insert hooks only at subprogram entry and
exit. This minimal level of instrumentation consumes negligible
resources but provides enough information in most cases to give
at least a rough indication of where and when an unexpected error
occurred. With DEBUG ON, the compiler will place hooks between
each statement in the compilation unit. This allows very fine
control over program execution and observation. It is antici-
pated that most users of the MAPSE system will choose to compile
most programs with DEBUG ON. A program version which has been
tested and released for use on a system where resources are tight
might compile with DEBUG OFF. In such a mode the debugger will
still be able to display the subprogram call history and display
or modify program variables at subprogram calls and returns.
This should be more than adequate to make an initial analysis of
any problem that should arise and to isolate the problem. If
more debugging is required to fix the problem, a test program can
be generated by recompiling selected parts with DEBUG ON.
Experience with this compiler-supported instrumentation technique
indicates that the penalties are small for leaving the hooks in,
for programs intended to execute on the host. What is gained is
control and debug flexibility.

The Ada compiler is capable of applying a wide variety of
optimizations to the code being generated. Some of these optimi-
zations are all but invisible, other than having the effect of
increasing execution speed. However, many of the more powerful
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forms of optimization unavoidably interact with the debugger, for
they cause the program to execute operations in an order other
than that indicated by the source program.

In order to provide the user with some control over this
interaction, the compiler has an OPTIMIZE parameter which can
take any of four values: CAN MODIFY, CAN INSPECT, ON and OFF. A
value of CAN MODIFY will allow all optimizations which permit the
user complete use of all debugging commands. A value of
CAN INSPECT allows optimizations which will not affect the
debUgger's ability to display values but which may cause unex-
pected results if a user attempts to modify a value. For exam-
ple, the program might evaluate a common subexpression once and
store its value in a temporary variable. If there were a break-
point between the evaluation of that expression and its use and
if the user modified a variable on which that expression
depended, the modification would not affect the value of the
expression, as the user might expect. An OPTIMIZE value of ON
allows optimizations which change the order of operations such
that even displayed values may be misleading. A value of OFF
will prevent all optimizations.

The debugger knows the optimization level for each compila-
tion unit and will issue a warning if the user attempts to exe-
cute a debugger command which is inappropriate for that level.

DESIGN DIRECTIONS - FUTURE APSE TOOLS

Functional Simulation

The MAPSE debugger lays the foundation for a future MAPSE
tool, that of Functional Simulation (FSIM) used so successfully
for software development for the Space Shuttle [Intermetrics 80].
In essence, since machine-independent Ada is implemented for both
host and target computers with identical semantics, the same
source code has the same meaning on both machines. It therefore
becomes possible to simulate and develop embedded computer
software on the host computer. This is the intention of Stoneman
definition 2.B.2.

The statement hook described above and shown in Figure 9-2
permits run time system routines to gain control of the execu-
tion. Aside from performing the debugging requests previously
discussed, such control can advance a pseudo-clock to maintain
problem time, act on and react to Ada tasking functions and
interface to KAPSE or other support routines for environment
updates, connections to systems outside APSE, etc. The pseudo-
clock, really just a software quantity, is based on weighting the
Ada statements with elapsed time that would have occurred on the
target machine. Such times are automatically computed and

9-7

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



entered by the compiler in a cost table based on target machine
characteristics. (Note that if host and target are the same, for
example, MAPSE tools, then pseudo time becomes actual time and no
computation is necessary - the actual clock can be read.)
Although accuracy is variable, it is usually sufficient to sup-
port the desired level of verification. The opportunity now
exists to develop an entire digital closed-loop simulator based
on pseudo-time. That is, all dynamic occurrences, including Ada
tasking, diagnostics and environment model updates, are performed
consistent with this time. The objective of this simulator is to
check out the FCS software to the greatest extent possible on the
host facilities before commitment to the target machine and its
more diagnostic-limited "hot bench" environment.

FSP PEG ,PS1t1 (IY.CLIiCIJ CONTPOL)

ADVANCE 'PSEUDO CLOCK' BASED ON
ADA CODE ECS COMPUTER CHARACTERISTICS ('TIME

EXECUTING WEIGHTED' ADA STATEMENTS
ON HOST

* _____ ACTIVATE ADA TASKINC FUNCTIONS:
__ _ MULTI -PROGRAMMING, DELAYS

EXECUTION _PEO E I G VESTS
0 MON I TOR ("BREAKPOINT" "ACTION")

INTERFACE TO KAPSE, WHEN NECESSARY,
FOR OTHER SUPPORT, E.G., ENVIRONMENT

UPDATE

Figure 9-2

With the hook technique already in the MAPSE design, FSIM is
a straightforward extension and will result in an effective and
efficient statement-by-statement Ada "functional simulator" exe-
cuting at full host speed (i.e., not an interpreter) while pro-
viding a high fidelity model of elapsed target computer time and
real time interactions.
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Debugging on the Target Machine

Debugging on the target computer itself is certainly desir-
able. To the extent that memory and resources are available, and
an Ada run time system provided, the MAPSE debugger could con-
ceivably be re-hosted onto the target machine. Practical con-
siderations, dealing with symbol table sizes, available peri-
pherals, etc., might require a two-machine set up where the tar-
get is connected to the MAPSE host (see Figure 9-1, config. C2)
or to another support computer.

In either case, the intention of the design is to provide
the same functionality of debug constructs and approach regard-
less of whether the ECS software executes in FSIM mode on the
host or in situ on the target. The model of the debugger con-
trolling an Ada program by communicating (through the KAPSE) with
a debugger support routine extends naturally to ECS target debug-
ging. A small, target-resident communication routine handles the
inter-machine protocol with the host-resident KAPSE. The
debugger design is essentially unchanged; the KAPSE program con-
trol functions must be extended to the target machine. Further
designs or implications of target debugging are considered beyond
the scope of this current effort.
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Chapter 10

MAPSE GENERATION AND SUPPORT

Two classes of tools are employed in the generation and sup-
port of the MAPSE.

1. Generators. These tools construct pieces of MAPSE
tools. A generator is used each time the corresponding
tool is revised. The parser and lexer generators
[MAPSE Generation Support (MGS) B-Spec, 3.2.1] create
the LEXSYN phase of the compiler [Compiler B-Spec,
3.2.2] from formal grammars. Similarly, the VMM
Representation Analyzer [MGS B-Spec, 3.2.2.4] takes an
Ada description of the kinds of objects which can
appear in a virtual memory, and produces the package
interface to the VMM implementation. This interface
package is included in MAPSE tools that utilize the
VMM.

2. Bootstraps. These tools provide a means of getting the
MAPSE "off the ground." Once the MAPSE is established,
these tools are no longer needed for support of the
MAPSE. The most important bootstrap tool is the
Bootstrap Compiler [MGS B-Spec, 3.3].

The design must address different questions for these tool
classes. For generators, should they be included as part of the
MAPSE, i.e., should they be written in Ada? The harder uestion
for bootstraps is how will they be realized? The following sub-
sections discuss the reasons for the design choices that answer
these questions.

GENERATORS BELONG TO THE MAPSE

Our design specifies that not only are MAPSE tools written
in Ada, but their generators are written in Ada as well. This
decision was based on several general principles.

In the first place, the SOW requires that the MAPSE be port-
able [S.O.W., 4.1.1.21. The easiest way to achieve this goal is
for the MAPSE tools and tools necessary for MAPSE generation to
be written in Ada, and for these generators to be part of the
MAPSE. If only the MAPSE tools were ported to a new host, it
would be awkward, or at worst impossible, to make any revisions
to the MAPSE on tht new host. Instead, changes could only be
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performed where the generators were supported, which in this case
would be 370 CKS. This would be an unacceptable situation.

The second argument in favor of this approach appeals to the
fundamental rationale for having an AIE; the AIE provides support
for the development and maintenance of Ada programs. MAPSE tools
are Ada programs, and therefore perfect candidates for being
self- supporting. Some level of extending, adapting, correcting,
and perfecting of the MAPSE tools is anticipated after the AIE is
complete. This can only be accomplished if all of the tools
(including the generator tools) are included in the MAPSE.

Independent of the MAPSE issue, Ada is an excellent language
in which to write the generator tools. Ada supplies facilities
that are as appropriate for building tools as they are for build-
ing embedded applications. It will also be a great convenience
to decommission the 370 CMS bootstrap system early in phase two,
and shift to a single development system of a higher quality (the
MAPSE itself). As described below, the Bootstrap Compiler,
implementing all of non-tasking Ada, will be available very
quickly. This allows the generator tools to be built in time for
use in developing the production compiler.

TOTAL SELF-HOSTING RATIONALE

MAPSE development work will be transferred from the CMS
bootstrap system to the preliminary MAPSE environment well before
the MAPSE is complete. This decision was easy to make even
though there are strong arguments on both sides.

The chief argument against self-hosting the last of the
development work is that to do so complicates the (already chal-
lenging) AIE development project. It increases the number of
MAPSE tools that are needed, and adds several lines to the PERT
chart.

Development costs are not seriously affected by the deci-
sion. The cost of additional tools is offset by the elimination
of the need to maintain the CMS and AIE systems in parallel.

The compelling arguments for self-hosting are reliability,
quality, and life-cycle cost considerations. Reliability depends
on adequate testing. Our experience with compilers and other
complex systems is that the first "real users" attempting to use
a system for its intended purpose will always find bugs that
escaped formal testing. Since MAPSE development is an intended
"real" use of the MAPSE, we can be our own guinea pigs. Early
self-hosting is a way to include user-testing within the original
AIE sche'ule.

Self-hosting will also tend to increase the quality of the
KAPSE/ KAPSE. As the first users of the MAPSE, we will be the
first to discover any shortcomings, inconsistencies, and
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"annoying little quirks" that may be in the design. We can iden-
tify the "microtools" that are needed to fill in minor gaps.
These microtools on other systems are generally 2-10 line command
language macros or "procs" that are invented over and over by
users. For example, most 360 systems have dozens of functionally
equivalent "microtools" for creating and submitting Job Control
Language for printing a file on a line printer. By being the
first real users, we can build any such missing capabilities
either as shell scripts, Ada programs, or enhancements to the
command language processor or other tools. The final, and
clinching, argument for self-hosting the last development phases
is that more effort will go into retargeting, rehosting, extend-
ing, and enhancing the MAPSE than will go into its original
development. A small increment of effort in MAPSE development
will ensure that it is a highly cost-effective tool later.

BOOTSTRAP ADA COMPILER

Two crucial decisions were made in arriving at a design for
the Bootstrap Compiler:

1. The existing DARPA Ada Compiler, implemented by Inter-
metrics in Simula on the DEC System 10/20, will be
moved to the 370 (where it will be supported by CMS
Simula) instead of implementing some subset Ada com-
piler from scratch.

2. A new code generator will be added which produces PL/I
as the target language, rather than assembly code.

These decisions are justified below on their own merits, and in
relation to the above-mentioned design alternatives.

We also demonstrate below that the proposed Bootstrap Com-
piler has these properties:

- It will be implemented quickly and with a minimum of
effort.

- It will compile and generate code for full Ada exclud-
ing only tasking features.

- The resulting compiled code will be reasonable in speed
and size; i.e., the Bootstrap Compiler will be an
effective tool for bootstrapping the Ada Compiler.

Use Existing DARPA Ada Compiler

Two usually conflicting criteria for a bootstrap compiler
are that it take very little time to build, and that it compile a
large enough subset of the language to make writing the Ada-in-
Ada compiler relatively painless. The conflict is that providing
a large subset usually takes a long time.
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If one were to start from scratch, this would be particu-
larly true of Ada. Facilities such as derived types, packages,
generics, and separate compilation, which are very desirable to
exploit in implementing the Ada-in-Ada compiler, are exactly
those features that take the longest to implement in the
bootstrap compiler. However, if the bootstrap provides only the
barest minimum support, then the Ada-in-Ada compiler will be dif-
ficult to implement; and many of the bootstrap-required contor-
tions will remain in the production compiler. Furthermore, few
of the other MAPSE tools could be started, since they might need
Ada facilities not supported by the bootstrap.

Instead, the strategy starts with an existing Ada compiler
that supports the entire language. (The added code generator
will not implement tasking.) Thus, from the start, the Ada-in-
Ada compiler (and the other MAPSE tools) can be implemented in
terms of Ada's best and most advanced structuring facilities.

Secondly, the Bootstrap Compiler can be brought up on the
370 very quickly. Not only does the compiler exist, but moving
it from DEC System 10/20 Simula to CMS 370 Simula is very easy.
In his paper on transporting Simula programs from the DEC-10 to
the 370, Orgass writes:

"With minor exceptions described below, the
languages implemented by the two compilers is the
same and this makes the transfer of SIMULA pro-
grams very easy. In contrast, it is very diffi-
cult to transfer Fortran programs from a DEC-10 to
CMS." [Orgass 79]

The exceptions he refers to are text replacements such as substi-
tuting parentheses for square brackets.

Adding the new code generator to the DARPA compiler requires
an intimate knowledge and understanding of the original compiler
and of Simula. Intermetrics is uniquely qualified to perform
this aspect of the bootstrap implementation.

Thus our approach will provide a bootstrap compiler that is
available early, and that supports all of non-tasking Ada. This
will have a very positive effect on the development of the pro-
duction compiler and the rest of the MAPSE.

This strategy yields a further bonus: the Bootstrap Com-
piler is a 370 hosted Ada compiler that generates code for the
370, and it will be available well before the production com-
piler. Unlike the usual quick-and-dirty bootstrap compiler, this
one will have the same user-friendly interface as the original
DARPA compiler. This makes the Bootstrap Compiler eppropriate for
educational usage. It might also be desirable to have some low-
risk projects start with the Bootstrap Compiler, and then
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graduate to the production compiler when it is released.

Generate PL/I as Target Code

The combination of back-end and run-time system of any Ada
compiler, including a bootstrap Ada compiler, must supply the
following facilities:

- data type representation,

- stack layout and stack-frame allocation,

- heap management (accessed objects),

- subprogram call and return,

- 370 code selection,

- register allocation, and

- I/O.

These in fact are the minimum facilities needed in which to write
the Ada-in-Ada compiler.

If it were decided that the bootstrap compiler generate
assembly code, then a compiler back-end and a run-time system
would have to be written that implement all seven facilities.
Implementing all of these would require a great deal of
resources, both in terms of people and in terms of schedule time.
Furthermore, little of the back-end or run-time system could be
salvaged for the production compiler (even with re-writing into
Ada). For instance, the code selection strategy would be simple,
and sub-optimal. The register allocation approach would use only
a small, fixed set of registers. The stack layout decisions
would omit considerations of tasking, etc.

The proposed design instead exploits a high level language,
PL/I, as the target language for code generation. The Bootstrap
Compiler's code generator performs a simple translation of the
internal Ada tree to PL/I. Then the generated PL/I program is
compiled by the 370 PL/I compiler. In this way, the PL/I compiler
and run-time system provide all seven facilities.

It is not necessary to build a run-time system for the
Bootstrap system. In fact, the Bootstrap Compiler only has to
support one of the facilities - data type representation - and
then only to a small extent because PL/I does not have type
definitions.

The oft-expressed criticism of PL/I - that it has too many
features - was the major reason for choosing it. In most cases,
the translation from Ada to PL/I is straightforward; most Ada
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constructs have an obvious mapping onto some PL/I construct.
(Note that the advanced visibility and scoping features of Ada
that are missing from PL/I such as packages and overloading, have
effects only in the semantic analysis phase, and do not appear in
the generated code.) For example PL/I has records, arrays, and
access types (based variables); it even supports aggregate
assignments of whole records and arrays. PL/I has ON conditions,
which can be utilized to support Ada exceptions. Another impor-
tant point is that PL/I provides separate compilation; this would
otherwise be difficult to supply in a bootstrap system.

Other reasons for choosing PL/I are that it is vendor sup-
ported, and that the compiler contains an optimizer. This latter
point can compensate for any sloppy PL/I code produced in the
translation process.

SYSTEM GENERATION

It was decided that the most thorough, practical, and cost
effective approach to system generation (tailoring the 370 system
to other 370s or the 8/32 system to other 8/32s) was to rely on
the facilities of the underlying operating system. The procedure
is to do system generation for the 0S/32 or the 370 VM operating
system and then to install the unmodified MAPSE on top.

VIRTUAL MEMORY METHODOLOGY

Over the past several years compiler implementations at
Intermetrics have been based upon a virtual memory strategy that
allows compiler phases and other tools to operate on arbitrarily
large program representations in a transparent manner, indepen-
dent of host memory constraints. Such a facility is critical for
Ada, because the separate compilation facilities require the
preservation of large amounts of symbol table information. It
cannot be assumed that the required external symbol data will fit
in main memory during compilation. Virtual Memory Methodology
(VMM) for the MAPSE draws upon our experience with previous
implementations and is designed to meet several key MAPSE objec-
tives: efficiency, reliability, portability and extendability.
In the remainder of this section, we illustrate how these goals
are met and describe the tradeoffs that were considered in making
the design decisions.

Space Efficiency

The two principal considerations for space efficiency are
the size of nodes and the size of virtual memory pointers ("loca-
tors*). Since the representation of a node is derived from an
Ada type declaration provided by the tool builder, VMM allows a
high degree of efficiency. The tool builder decides whether dif-
ferent nodes are variants of a single type, or whether they are
different types, based on expected usage patterns and knowledge
of the attributes. Minimal space overhead results from VMM
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itself - from past experience, this is roughly two machine words

per node. Locators will occupy either one or two machine words.

Time Efficiency

A critcal aspect of time efficiency is the amount of pro-
cessing required to dereference a locator. One possible tech-
nique that minimizes this time is to perform an "environment
readu step before processing begins. Basically, this step
"links" VMM files together by replacing locators with more direct
references (access values, if the files can be core resident).
In this way, the dereferencing operation is inexpensive, but adds
significant costs in other areas: (1) the linking is done even
though only a small number of actual references may be needed;
(2) a great deal of copying is required; (3) the technique loses
its advantages when the files cannot be core resident. Instead
of an environment read, VMM performs dereferencing of locators as
required during the processing. Although this appears to intro-
duce overhead for each dereference, in fact there are facilities
under both system and user control that make this technique effi-
cient. As an example, the user may "freeze" a locator (thereby
obtaining an Ada access value as a node reference) and subse-
quently wunfreezew it.

Another important aspect of time efficiency is the amount of
recompilation that is required. As an example, inserting a com-
ment in a compilation unit Q, and then recompiling Q, will result
in a Diana representation that may have nodes at different posi-
tions than in the earlier version.. A compilation unit depending
upon Q may have locators into the earlier version that are no
longer valid. It would be unfortunate if the dependent had to be
recompiled because of out-of-date locators, since the addition of
a comment should not invalidate dependents. To solve this prob-
lem, VMM permits a program to specify a locator translation with
the following effect. When a locator is dereferenced and found
to refer to a database object for which a translation is defined,
the locator value will first be "looked up" in a table and a
corresponding locator for a different database object will be
substituted automatically.

Reliability

VMM enforces a centralized definition of the interfaces that
are used between tools, thus ensuring at all times a single con-
sistent view. This is important for reliability, since the job
of system integration is made easier. As an example, the various
Diana versions that serve as compiler phase interfaces are
defined together; thus the system can ensure that an attribute
required by one phase is in fact output by its predecessor.

The representation analyzer is the element of VMM that helps
achieve this centralization. It also promotes reliability in
that it automates the generation of data structure creation and
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access routines and internal-to-external conversion routines
based on the type declarations supplied. Note that the support
of an external (ASCII) representatiion is itself important to
reliability, since it aids the testing of the MAPSE tools.

Portability

There are two main characteristics of VMM that help achieve
MAPSE portability. First is the virtual memory management, which
allows tools to be written independent of host machine memory
limitations. Obviously, working set limitations may degrade sys-
tem performance on small hosts, but there is no need for the tool
builder to be concerned about this level of detail in the writing
of the tool.

A second portability consideration is the reliance on Ada as
the metalanguage for defining the node structures. Although
alternative formalisms were examined (e.g., IDL (Nestor 811),
using Ada offers several advantages:

1. It is sufficiently high level to be a readable nota-
tion.

2. It is sufficiently low level to permit efficient imple-
mentation.

3. It avoids a new notation and the requirement for a new
translator.

Extendability

The MAPSE is expected to grow as new tools are introduced,
and VMM easily supports such growth. Basically, a tool may define
a new set of node types and create and reference objects from
both the new types and existing types defined by another tool
within the same domain. The addition of a new tool does not
require recompilation of any existing tools.
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Chapter 11

CONCLUSION

The design presented in the A and B-5 specifications and
elaborated upon in this document meets the spirit of Stoneman and
the requirements of the S.O.W. The high degree of integration
among its elements both in design and conceptional use breaks new
ground. The MAPSE virtual operating system (KAPSE) provides cen-
tral management, communications and control. It provides facili-
ties to organize projects, delegate authorities, distribute
responsibilities, provide communications links among tools and
users, and maintain data integrity in terms of configuration
management.

The approach to specific MAPSE tools is one which keeps con-
siderations of the user-interface uppermost. The APSE will not
succeed in improving productivity, or even win acceptability, if
it is perceived as difficult to use, cumbersome or inefficient.
MAPSE tools have been carefully designed to support the stated
objectives of Ada, that of developing embedded computer software.
The design makes provisions for and looks to future APSE tools
which will be required for ECS (target) development.

No feature has been proposed which cannot be realized or
cannot be implemented efficiently in Ada. We believe the best
state-of-the-art techniques are employed in the compiler design
and eventual construction. The level of achieved optimization is
more than adequate while still maintaining the conservatism
necessary to ensure reliable code. Through the pervasive use of
Ada and the isolation of machine dependencies within the KAPSE
(and compiler code generation), rehosting and retargeting of the
MAPSE will be a straightforward task of limited effort. Our
bootstrap approach is of low risk and will allow rapid develop-
ment of the system on the IBM 370/VM.

In summary, our design meets the requirements, is modern in
approach and does form the basis for an Ada Integrated Environ-
ment.
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APPENDiIX

A.1 A Simple Programming Scenario

A.2 A Short Management Scenario
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Appendix A.1

A Simple Proqramming Scenario

Logon AFAda -- Host may dictate logon syntax

:edit example -- Create a new text file

>insert
-- This example program writes the string "Hello"
-- on standard output.
With Text 10; Use Text_10;
Procedure-Example is

Begin
Put("Hello");

End Example;
;write

>quit

-- The dot '.' above is not part of the text of example.
-- It told the editor to leave insert mode.
-- The write editor command saved the text in "example"

:compile example proglib -- compile into new program library

PROCEDURE EXAMPLE COMPILED WITH 0 ERRORS.

:link proglib -- Main unit assumed

:proglib.link.example -- Invoke program from library

Hello

:copy proglib. link.example mysearch lib.example

-- Install program in library which

-- is searched for commands

:example -- Invoke program from user's library

Hello

:Igout
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Appendix A.2

A Short Management Scenario

Problem Statement

A manager begins a new project -- to develop a cockpit sys-
tem with a stick control monitor, a heads-up display, and a key-
board and display command unit. The manager creates a composite
object in which the various test levels of the system source,
documentation, and test results will be collected. She then
creates and sends out appropriate windows on the composite object
to Jane, the developer for the stick monitor module, and George,
the tester for test level one of the entire cockpit system.

The manager's first action is to create the composite object
named COCKPIT, with four distinguishing attributes.

: CREATE COMPOSITE COCKPIT,
COMPONENTDA=>"MODULE SUB-MODULE TYPE TESTLEVEL"

The manager then specifies the categories of the components
of COCKPIT. The modules names are pre-specified, but the submo-
dules are left open; each module has an associated test level;
each named module has a source part, a documentation part, and
test results. She specifies three capacities
(TESTER,DEVELOPER,MANAGER) and specifies for the types SOURCE and
TESTRESULTS the level of access control for each capacity.

: SETCATEGORY COCKPIT -- Fill in the detailed category def.
(CATEGORYCLASS->COMPOSITE -- for the cockpit composite object.
COMPONENT DA=> -- Specify the distinguishing attributes.

(MODULE=>(CONTROLMON,HEADS UP DISPLAY,KBCOMMAND),
SUB MODULE, -- (no limitations on SUBMODULE name)
TYPE=> (SOURCE, DOC, TESTRESULTS),

d TESTLEVEL->(0..*)

COMPONENT CAPACITIES->(TESTER,DEVELOPER,MANAGER),
COMPONENT CATEGORIES->

((TYPE=>SOURCE)=> -- All components with TYPE->SOURCE...
(CATEGORY CLASS->SIMPLE,
CATEGORY NAME=>ADASOURCE,
ACCESS CONTROL->

(TESTER-> (READ,COPY)
DEVELOPER- (ALL),
MANAGER- (READ))

(TYPE->TESTRESULTS)-> -- All components TYPE->TESTRESULTS...
(CATEGORYCLASS->SIMPLE,
ACCESSCONTROL->
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(TESTER=>(ALL), -- Tester controls TEST RESULTS.
DEVELOPER=> (READ),
MANAGER=> (READ,COPY)) ) ) )

Now the manager creates a window on COCKPIT with the capa-
city DEVELOPER, but limited to the module CONTROL MON. The win-
dow is passed via the mail system to the user, Jane, who is to
have the DEVELOPER capacity.

: CREATE WINDOW CTL MONWINDOW, -- Set up a window for Jane.
TARGET=>COCKP IT,
PARTITION=>(MODULE=>CONTROLMON),
CAPACITY=>DEVELOPER

: SENDMAIL TOUSER=>JANE, -- and send it off.
SUBJECT=>"Please set up Control Monitor System",
MESSAGEOBJ=>CTLMONWINDOW

Similarly, a window on COCKPIT with the capacity TESTER is
sent to user George. George is given permission to be a TESTER
for all modules with a TESTLEVEL of 1.

: CREATE WINDOW LEV ONE, -- Set up a window for George.
TARGET->COCKPIT,
PARTITION=>(TESTLEVEL=>l),
CAPACITY=>TESTER

: SENDMAIL TOUSER=>GEORGE, -- and send it off.
SUBJECT=>"Please checkout the Cockpit System",
MESSAGEOBJ=>LEVONE

... Some time later, the manager checks on George's testing:

: LISTPARTITION COCKPIT.(MODULE=>CONTROL MON,TEST LEVEL=>l)
Partition COCKPIT.(MODULE=>CONTROLMONTESTLEVEL=>l)
(SUBMODULE=>INITIALIZATION,TYPE=>DOC)
(SUB MODULE=>INITIALIZATION,TYPE=>SOURCE)
(SUB7MODULE=>STICK POS INPUT,TYPE->DOC)
(SUB MODULE=>STICKIPOS-INPUT,TYPE->SOURCE)
(SUBMODULE->STICKPOSINPUT,TYPE=>TESTRESULTS)

..% The manager checks the test results for the stick position

... sub module:

: LIST COCKPIT.CONTROLMON.STICK_POSINPUT.TESTRESULTS.1
Test 1 Ok
Test 2 Fail THETAWARN=30, THETASTICK=37
Test 3 Ok
Test 4 Fail THETAWARN-18, THETASTICK--22
Test 5 Ok

: LOGOUT -- Seeing that work is under way, the manager signs off.
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